Kajian Generalisasi Distribusi Binomial yang Bertipe COM-Poisson dan Sifat-Sifatnya

Marselly Dian Saputri
Submission Date: 2015-08-05 12:49:20
Accepted Date: 2016-01-20 15:21:47


Distribusi Binomial dan Poisson digunakan untuk menganalisis data diskrit. Karena distribusi Poisson berlaku equidispersi, sehingga dilakukan generalisasi terhadap distribusi Poisson menjadi distribusi COM-Poisson untuk menganalisis data diskrit yang equidispersi, overdispersi dan underdispersi. Generalisasi dari distribusi Binomial yang dapat menganalisis data dengan kejadian overdispersi dan underdispersi adalah distribusi COM-Poisson-Binomial. Pdf nya diperoleh dari  distribusi COM-Poisson bersyarat dari penjumlahan dua distribusi COM-Poisson. Selain itu, dalam Tugas Akhir ini juga dilakukan estimasi terhadap parameter-parameter dari COM-Poisson-Binomial dengan menggunakan Maximum Likelihood Estimation (MLE). Selanjutnya hasil estimasi ini dicoba pada data asosiasi sekunder dari kromosom di Brassika. Karena Maximum Likelihood Estimation menghasilkan persamaan non-linier yang hasilnya digunakan untuk mencari nilai estimasi parameter dan parameter persamaan non-linier tersebut diselesaikan dengan menggunakan metode Newton-Raphson. Hasil dari proses tersebut didapatkan nilai estimasi parameter dan nilai estimasi parameter


Distribusi Binomial; Distribusi COM-Poisson; Overdispersi; Underdispersi; Maximum Likelihood Estimation


Shmueli, G., T. P. Minka, J. B. Kadane, Borle, and P. Boatwright. 2005. “A Useful Ditribution for Fitting Discrete Data: Revival of The Conway-Maxwell-Poisson Distribution”. Applied Statistics, Journal of Royal Statistical Society 54 no. 1, hal.127-142.

Altham, P.M.E. 1978. ”Two generalizations of the binomial distribution”. J. Roy. Statist. Soc. Ser. C 27, hal. 162-167.

Kupper, L.L., Haseman, J.K. 1978. “The use of a correlated binomial model for the analysis of certain toxicological experiments”. Biometrics 34, hal. 69-76.

Borges, P., Rodrigues, J., Balakrishnan, N., and B. Jorge. 2014. “A COM-Poisson Type Generalization of the Binomial Distribution and its Properties and Applications”. Statistics and Probability Letters 87, hal.158-166.

Walpole, R.E. “Pengantar Statistika Edisi ke-3”. Jakarta: PT. Gramedia Pustaka Utama.

Bain, L.J., and Engelhardt, Max. 1991. “Introduction to Probability and Mathematical Statistics 2nd edition”. Belmont, California: Duxbury Press.

Agresti, A. 2002. “Categorical Data Analysis 2nd edition”. John Wiley and Sons, New York.

Skellam, J.G. 1948. “A probablility distribution derived from the binomial distribution by regarding the probability of success as variable between the sets of trials”. J.Roy. Statist.Soc.Ser. B 10, hal.257-261.

Full Text: PDF

CC Licencing

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


  • There are currently no refbacks.

Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.