Data Mining Peramalan Konsumsi Listrik dengan Pendekatan Cluster Time Series sebagai Preprocessing

Mohammad Alfan Alfian Riyadi, Kartika Fithriasari, Dwiatmono Agus Widodo
Submission Date: 2016-01-26 10:04:27
Accepted Date: 2016-04-28 10:46:38

Abstract


Kondisi big data dan data time series memiliki permasalahan tersendiri didalam mengolah suatu data. Terle-bih lagi data tersebut juga multivariabel. Salah satu permasa-lahan yang terjadi adalah ketika proses identifikasi model yang sesuai untuk tiap series. Beberapa metode time series seperti ARIMA dan ANN membutuhkan proses identifikasi untuk menentukan orde ARIMA dan input ANN yang akan digunakan. Melakukan identifikasi satu per satu tiap series tidak mungkin dilakukan. Untuk itu perlu dilakukan prepro-cessing data salah satunya dengan menggunakan cluster. Metode ukuran kesamaan dalam cluster time series salah satunya adalah autocorrelation based distance.  Dari masing-masing cluster yang dihasilkan dipilih salah satu anggota untuk dilakukan permodelan. Diharapkan model yang dihasil-kan mewakili anggota cluster secara keseluruhan. Metode peramalan yang digunakan pada penelitian kali ini adalah ARIMA dan ANN dengan studi kasus data benchmark konsumsi listrik di Portugal. Hasil yang diperoleh adalah dihasilkan sebanyak tujuh cluster dengan anggota cluster terbanyak pada cluster ke empat yakni sebanyak 120 client. Selanjutnya model peramalan dengan menggunakan ANN lebih baik dibandingkan ARIMA. Diperoleh sebanyak 259 dari 348 client yang menyatakan bahwa permodelan dengan menggunakan ANN lebih baik dibandingkan ARIMA

Keywords


Breast ANN;ARIMA;Autocorrelation based distance;Cluster time series

References