CONVOLUTIONAL NEURAL NETWORKS UNTUK PENGENALAN WAJAH SECARA REAL-TIME

Muhammad Zufar, Budi Setiyono
Submission Date: 2016-07-28 23:13:49
Accepted Date: 2016-11-23 18:14:55

Abstract


Identifikasi identitas individu melalui pengenalan wajah secara otomatis merupakan suatu persoalan besar yang menarik dan banyak sekali berbagai macam pendekatan untuk menyelesaikan persoalan ini. Apalagi di dalam skenario kehidupan nyata yang tidak terkontrol, wajah akan terlihat dari berbagai sisi dan tidak selalu menghadap ke depan yang membuat permasalahan klasifikasi menjadi lebih sulit diselesaikan. Dalam Tugas Akhir ini digunakan salah satu metode deep neural networks yaitu Convolutional Neural Networks (CNN) sebagai pengenalan wajah secara real-time yang sudah terbukti sangat efisien dalam klasifikasi wajah. Metode diimplementasikan dengan bantuan library OpenCV untuk deteksi multi wajah dan perangkat Web Cam M-Tech 5MP. Dalam penyusunan arsitekur model Convolutional Neural Networks dilakukan konfigurasi inisialisasi parameter untuk mempercepat proses training jaringan. Hasil uji coba dengan munggunakan konstruksi model Convolutional Neural Networks sampai kedalaman 7 lapisan dengan input dari hasil ekstraksi Extended Local Binary Pattern dengan radius 1 dan neighbor 15 menunjukkan kinerja pengenalan wajah meraih rata-rata tingkat akurasi lebih dari 89% dalam ∓ 2 frame per detik.

Keywords


Convolutional neural networks

References


T. Dunstone and N. Yager. Biometric System and Data Analysis: Springer, 2009.

LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998d). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

Gonzalez, R.C and Rafael E.W. Digital Image Processing. Prentice-Hall. Inc.. United State, America. 2008.

Timo Ahonen, Abdenour Hadid,and Matti Pietik¨ ainen. Face Description with Local Binary Patterns:Application to Face Recognition. vol. 28 no. 12, pp. 2037-2041, December 2006.

Mac Developer Library. Performing Convolution Operations[Online]. Available: https://developer.apple.com /library/mac/documentation.

Hubel, D. and Wiesel, T. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London), 195, 215–243.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biological Cybernetics, 36, 193–202.

Serre, T., Wolf, L., Bileschi, S., and Riesenhuber, M. (2007). Robust object recog- nition with cortex-like mechanisms. IEEE Trans. Pattern Anal. Mach. Intell., 29(3), 411–426. Member-Poggio, Tomaso.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.