Kajian Pendekatan Penempatan Ligan Pada Protein Menggunakan Algoritma Genetika

Hartanto Setiawan, Mohammad Isa Irawan
Submission Date: 2017-07-28 13:20:03
Accepted Date: 2017-12-31 15:38:17


Penempatan ligan pada protein atau molecule docking merupakan bidang komputasi yang sedang berkembang. Metode molecular docking adalah metode yang bermanfaat untuk mencari kombinasi interaksi protein dan  ligan serta menjadi dasar penemuan obat secara simulasi. Molecular docking yang digunakan adalah flexible docking dan jenis protein-ligand docking. Pendekatan algoritma genetika merupakan metode alternatif yang bisa digunakan untuk simulasi molecular docking. Hasil dari pendekatan algoritma genetika yaitu berupa penempatan posisi docking yang optimum. Penerapan algoritma genetika dalam docking tidak berlaku untuk semua protein dan ligan.  Dalam penerapannya tingkat homologi mempengaruhi keberhasilan dari docking.


Algoritma Genetika;Molecular docking; Protein-ligand docking;Flexible docking


Motiejunas, D., & Wade, R. (2006). Structural, Energetics, and Dynamic Aspects of Ligand-Receptor Interactions. In J.B. Taylor & D. J. Triggle (Eds.). Comprehensive Medicinal Chemistry II Volume 4: Computer-Assited Drug Design, Vol.4, pp. 193-214. Elsevier.

Gane PJ, & Dean PM. (2000). Recent Advances in Structure-Based Rational Drug Design. Current Opinion in Structural Biology, 10:401-404.

I. Belda et al. (2005). ENPDA: An Evolutionary Structure-Based De Novo Peptide Design Algorithm. Journal of Computer-Aided Molecular Design 19, 585-601.

Osterberg, F., Morris, G., Sanner, M., Olson, A., & Goodsell, D. (2002). Automated Docking to Multiple Target Structure: Incorporation of Protein Mobility and Structural Water Heterogeneity in Auto Dock. Protein 46, 34-40.

Magalhães, C. d. (2004). A Genetic Algorithm for The Ligand-Protein Docking Problem. Genetics and Molecular Biology 27, 605-610.

Floquet, N., Marechal, J., Badet-Denisot, M., Robert, C., Dauchez, M., & Perahia, D. (2006). Using Normal Modes Analysis as A Prerequisite for Drug Design : Application to Matix Metalloproteinase Inhibitors. FEBS Letters 580, 5130-5136.

Mouawad, L., Perahia, D., Cui, Q., & Bahar, I. (2006). Normal Mode Analysis Theory and Applications to Biological and Chemical Systems. Chapman & Hall.

Spyrakis, F. (2007). The Consequences of Scoring Docked Ligand Conformations Using Free Energy Correlations. European Journal of Medicinal Chemistry 42, 921-933.

Thomsen, R., Christensen, H., & MolDock. (2006). A New Technique for High-Accuracy Molecular Docking. Journal of Medicinal Chemistry 49, 3315-3321.

Huang, S., & Zou, X. (2007). Efficient Molecular Docking of NMR Structures : Application to HIV-1 Protease. Protein Science 16, 43-51.

Guerler, A., S.Moll, M.Weber, Meyer, H., & Cordes, F. (2008). Selection and Flexible Optimization of Binding Modes from Comformation Ensembles. Biosystem 92, 42-48.

Van Gunsteren. G., & Berendsen HJC. (1987). Groningen Molecular Simulation (GROMOS) Library Manual. Biomos, Groningen.

Smith LJ, Mark AE, Dobson CM and van Gunsteren WF (1995). Comparison of MD Simulation and NMR Experiments for Hen Lysozyme. Analysis of Local Fluctuations, Cooperative, and Global Changes. Biochemistry, 34: 1091810931.

Pascutti PG, Mundim KC, Ito AS and Bisch PM (1999). Polarization Effects on Peptide Conformation at Water-Membrane Interface by Molecular Dynamics Simulation. J Comp Chem, 20 : 971-982.

Lima, A., Philot, E., Perahia, D., Braz, A., & Scott, L. (2012). GANM: A Protein-Ligand Docking Approach Based on Genetic Algorithm and Norma Modes. Appl.Math.Comput.219, 511-520.

Mahdiyah, U., Irawan, M. I., & E.M.Imah. (2016). Integrating Data Selection and Extreme Learning Machine to Predict Protein-Ligand Binding Site.

Shahab, M. L. & Irawan, M. I. (2016). Algoritma Genetika Ganda untuk Capacitated Vehicle Routing Problem. Journal of Sains dan Seni ITS

Muhtaromi, M. & Irawan, M. I. (2016). Perancangan Prototipe Perangkat Lunak Untuk Penempatan Pegawai Dengan Model Pilihan Dari Perspektif Dua Arah Berbasis Algoritma Genetika. Journal of Sains dan Seni ITS

Firmansyah, A., Utomo , D. B. & Irawan, M. I. (2016). Algoritma Genetika Ddengan Modifikasi Kromosom Untuk Penyelesaian Masalah Penjadwalan Flowshop. Journal of Sain dan Seni Vol 1 no. 1

Pramsistya, Y., Utomo , D. B. & Irawan, M. I. (2010). Optimasi Penempatan BTS dengan Menggunakan Algoritma Genetika. Journal of Sain dan Seni Vol 1 no. 1

Full Text: PDF

CC Licencing

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


  • There are currently no refbacks.

Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.