Pemodelan Profile Greenhouse Berbasis Neural Network

Muhammad Rizky, Melania Suweni Muntini, Iim Fatimah
Submission Date: 2017-08-01 16:05:35
Accepted Date: 2017-12-31 15:38:17


Pemodelan profile greenhouse merupakan salah satu hal penting untuk memaksimalkan pertumbuhan tanaman yang ditanam di dalam greenhouse. Sebelum dimodelkan, dibandingkan ketika greenhouse dengan sistem otomasi dalam keadaan mati dan ketika greenhouse dengan sistem otomasi dalam keadaan hidup. Dengan diterapkan sistem otomasi dapat meningkatkan kualitas greenhouse dengan cara menurunkan suhu dan meningkatkan kelembaban. Semakin baik kualitas greenhouse maka semakin baik pertumbuhan tanaman dalam greenhouse. Pemodelan dalam penelitian ini digunakan model neural network tipe back-propagation. Profile greenhouse meliputi suhu udara, kelembaban udara, suhu tanah dan kelembaban tanah. Hasilnya ialah profil terbaik dari greenhouse adalah pada suhu udara pukul 16.00 – 07.00, kelembaban udara mencapai 98%, suhu tanah pukul 18.00 – 08.00 dan kelembaban tanah mencapai 98% serta hasil pemodelan mendekati data pengukuran dengan nilai kesalahan mencapai 1%.


greenhouse; suhu; kelembaban; neural network


Ali, A., Ishaque, K., Lashin, A., Al Arifi, N., 2016. Modeling of a liquid desiccant dehumidification system for close type greenhouse cultivation. Energy.

PhD Thesis Adrianus WMvS. Integrated heat air and moisture modeling andsimulation. Eindhoven University of Technology; 2007.

van Beveren, P.J.M., Bontsema, J., van Straten, G., van Henten, E.J., 2015. Optimal control of greenhouse climate using minimal energy and grower defined bounds. Appl. Energy 159, 509–519.

Dorado, A.D., Lafuente, J., Gabriel, D., Gamisans, X., 2010. The role of water in the performance of biofilters: parameterization of pressure drop and sorption for common packing materials. Journal of Hazardous Materials 180, 693e702.

Chen, L., Hoff, S.J., Koziel, J.A., Cai, L., Zelle, B., Gang, B., Sun, G., 2008. Performance evaluation of a wood-chip based biofilter using solid-phase microextraction and gas chromatographyemass spectroscopyeolfactometry. Bioresource Technology 99, 7767e7780.

Maia, G.D., Gates, R.S., Taraba, J.L., Coyne, M.S., others, 2012. Moisture effects on greenhouse gases generation in nitrifying gas-phase compost biofilters. Water Res. 46, 3023–3031.

Hsieh, K.L., Lu, Y.S., 2008. Model construction and parameter effect for TFT-LCD process based on yield analysis by using ANNs and stepwise regression. Expert Systems with Applications 34 (1), 717–724.

He, F., Ma, C., 2010. Modeling greenhouse air humidity by means of artificial Neural Network and principal component analysis. Comput. Electron. Agric. 71, S19–S23. Dipetik 12 2, 2017

Haykin, S., 1998. Neural Networks: A Comprehensive Foundation, second ed. Prentice Hall PTR, Ontario Canada.

Espinoza, K., Valera, D.L., Torres, J.A., López, A., Molina-Aiz, F.D., 2016. Combination of image processing and artificial Neural Networks as a novel approach for the identification of Bemisia tabaci and Frankliniella occidentalis on sticky traps in greenhouse agriculture. Comput. Electron. Agric. 127, 495–505.

F, Suhandi.2009. Algoritma Back Propagation Dipetik 22 06, 2017

Nurhayati & Fitri.2010.“Penerapan Metode Back Propagation Neural Network pada Pendeteksian Kelainan Otak Ischemic Cerebral Infraction dengan Bahasa Pemrograman Delphi”.Jurnal Fisika dan Aplikasinya Vol 6 no 1. DOI:

Full Text: PDF

CC Licencing

Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).


  • There are currently no refbacks.

Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.