Implementasi Algoritma Genetika untuk Optimalisasi Random Forest dalam Proses Klasifikasi Penerimaan Tenaga Kerja Baru : Studi Kasus PT.XYZ

Laras Binarwati, Imam Mukhlash, Soetrisno Soetrisno
Submission Date: 2017-08-01 21:25:40
Accepted Date: 2017-12-31 15:38:17

Abstract


Kualitas sumber daya manusia sangat penting bagi suatu perusahaan untuk mempertahankan keunggulan kompetitifnya agar mampu bersaing dengan perusahaan lainnya maupun untuk meningkatan kualitas dari perusahaan itu sendiri. Oleh karena itu, menggali pola penerimaan tenaga kerja baru sangat diperlukan. Pada penelitian ini, metode random forest digunakan untuk menggali pola penerimaan tenaga kerja  baru. Adapun  algoritma genetika (GA) digunakan untuk mengoptimalkan akurasi berdasarkan pola yang didapat. Hasil pengujian program ini menunjukkan keakuratan pola yang dihasilkan oleh random forest yang dioptimalkan dengan algoritma genetika lebih tinggi dengan hasil keakuratan berkisar antara 91%-95% dibanding dengan hanya menggunakan random forest saja yang hanya berkisar 40-95%.


Keywords


Penerimaan Tenaga Kerja; Klasifikasi; Random Forest; Algoritma Genetika

References


Gorunescu, Florin. (2011). “Data Mining: Concepts, Models, and Techniques”. Verlag Berlin Heidelberg. Springer

Jantan. Hamidah, dkk. (2009). “Knowledge Discovery Techniques for Talent Forecasting in Human Resource Application”. International Journal od Social, Behavioral, Educational, Economic, Business and Industrial Engineering Vol:3, No:2,

Han, J, Micheline K, Jian Pei. (2012). “Data Mining Concept and Techniques 3nd Edition”. Morgan Kaufman Publisher. USA

Elyan, Eyad. dan Mohamed Medhat Gaber. (2016). “A Genetic Algorithm Approach to Optimising Random Forests Applied to Class Engineered Data”. School of Computing Science and Digital Media, Robert Gordon University, UK.

Chien, C.F. dan L.F. Chen. (2008). “Data mining to improve personnel selection and enhance human capital: A case study in high-technology industry”. Expert Systems and Applications. (pp 280-290).

Chen, K.K., dkk (2007). “Constructing a Web-based Employee Training Expert System with Data mining Approach”. The 9th IEEE International Conference on E-Commerce Technology and The 4th IEEE International Conference on Enterprise Computing, E-Commerce and E-services (CEC-EEE 2007).

Adi Saputro, Halim, Wayan Firdaus Mahmudy dan Candra Dewi. (2015). “Implementasi Algoritma Genetika untuk Optimasi Penggunaan Lahan Pertanian”. Teknik Informatika, Program Teknologi Informasi dan Ilmu Komputer, Universitas Brawijaya.

Mahmudy, Wayan Firdaus. (2013). “Algoritma Evolusi”. Program Teknologi Informasi dan Ilmu Komputer. Universitas Brawijaya. Malang

Kadir, A. (2005). Dasar Pemrograman Java 2. Yogyakarta: ANDI.

Hariyanto, B. (2011). Esensi-Esensi Bahasa Pemrograman Java. Bandung: Informatika.

Lievens, Van Dam, & Anderson (2002). Recent Trends and Challenges in Personnel Selection. ABI/INFORM Global pg. 580.

Berry, M.J.A dan Linoff, G. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Support. John Wiley & Sons.

Breiman, L. (2001). Machine Learning, 45: 5-32.

Haupt, Randy L., dan Haupt, Sue Ellen. (2004) Practical Genetic Algorythms Second Edition. S.1 : John Wiley & Sons.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.