Pengaruh Aggregasi terhadap Parameter Long Memory Time Series

Moch. Koesniawanto, Heri Kuswanto
Submission Date: 2013-02-14 09:33:43
Accepted Date: 2013-03-15 18:32:16

Abstract


Proses identifikasi terhadap fenomena Long Memory tidaklah mudah. Berbagai alat identifikasi seperti plot ACF dan berbagai statistik uji lain masih sangat lemah. Beberapa penelitian mengungkapkan bahwa beberapa model nonlinear dapat dengan mudah teridentifikasi sebagai Long Memory yang sering dikenal sebagai Spurious Long Memory. Oleh karena itu, dalam tugas akhir ini akan disimulasikan pengaruh flow aggregation dan stock aggregation sebagai alternatif cara untuk mendeteksi Long Memory. Saham digunakan sebagai studi kasus karena proses pencatatannya sama dengan penerapan dari stock aggregation dan beberapa penelitian menyatakan bahwa harga mutlak dari return saham sering tertangkap sebagai fenomena Long Memory, namun tidak sedikit penelitian yang memodelkan return saham dengan model nonlinear, contohnya seperti ESTAR, sehingga simulasi dibangun dengan membangkitkan data Long Memory dan ESTAR sebagai Spurious Model dengan ukuran sampel 2000 dan 5000, lalu diaggregasi masing-masing dengan kedua jenis aggregasi hingga 10 level aggregasi. Hasil simulasi menunjukkan bahwa temporal aggregation terbukti dapat mendeteksi Long Memory dan membedakannya dengan ESTAR dari pola parameter integrasinya. Pada data ESTAR, kedua aggregasi menunjukkan bahwa nilai parameternya tidak berpola atau random seiring naiknya level aggregasi, sedangkan untuk Long Memory memiliki pola khusus untuk setiap jenis aggregasi. Tiga saham yang dijadikan studi kasus yaitu BMRI, BBNI, dan BBRI lebih baik dimodelkan dengan ARFIMA daripada ESTAR karena menghasilkan forecast yang akurasinya lebih baik

Keywords


Long Memory; Spurious Long Memory; Aggregasi; ARFIMA; ESTAR

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.