Pemodelan VAR-NN dan GSTAR-NN untuk Peramalan Curah Hujan di Kabupaten Malang

Kadek Kardya Novi Diani, Setiawan Setiawan, Suhartono Suhartono
Submission Date: 2013-02-14 14:49:25
Accepted Date: 2013-10-01 08:38:17

Abstract


Model Vector Autoregressive (VAR) dan Generalized Space Time Autoregressive (GSTAR) merupakan metode pemodelan time series yang menggunakan lebih dari satu variabel. Kedua pemodelan tersebut merupakan kelompok pemodelan yang linier. Adapun Neural Network (NN), merupakan salah satu metode pemodelan yang mampu menangkap pola-pola nonlinier. Dalam penelitian ini, dilakukan penerapan metode pemodelan NN pada data curah hujan di Kabupaten Malang dengan menggunakan variabel input dalam model VAR  dan GSTAR sebagai input layer dalam model NN. Perbandingan antara model VAR-NN dan GSTAR-NN juga dilakukan dalam penelitian ini untuk mengetahui model mana yang dapat memberikan nilai ramalan terbaik. Peramalan menggunakan kedua model tersebut dilakukan untuk 1 tahap, 3 tahap, 6 tahap, 9 tahap, 18 tahap, dan 36 tahap ke depan. Berdasarkan hasil perbandingan antara kedua model tersebut, diketahui bahwa model VAR-NN memberikan hasil peramalan yang lebih baik daripada model GSTAR-NN. Hasil ramalan terbaik dari kedua model tersebut akan diperoleh jika peramalan dilakukan pada 1 tahap ke depan dan dengan 1 neuron dalam hidden layer.


Keywords


curahhujan; GSTAR; model nonlinier; neural network, time series, VAR.

Full Text: PDF PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.