Klasifikasi Microarray “Prostate Cancer” Menggunakan Metode Fuzzy Support Vector Machine (FSVM)-Genetic Algorithm

Cicilia Ajeng Pratiwi, Irhamah Irhamah
Submission Date: 2018-08-02 21:01:29
Accepted Date: 2019-02-13 22:35:45

Abstract


Salah satu jenis kanker yang yang menjadi penye-bab terbanyak kematian pada populasi pria adalah kanker prostat. Penyakit ini hanya terdapat pada pria karena pada wanita tidak memiliki kelenjar prostat. Secara global, kanker prostat menduduki urutan keempat, kanker yang paling sering ditemukan pada manusia setelah kanker payudara, paru dan kolorektum. sedangkan angka kejadian kanker pada pria, kanker prostat menduduki urutan ke-2. Pada umumnya pende-rita baru mengetahui penyakit tersebut sudah memasuki stadium lanjut. Terlambatnya penanganan pada penderita prostate bisa berakibat fatal bahkan dapat menyebabkan kematian. Oleh karena itu,penyakit kanker prostat sangat penting untuk didiag-nosis sedini mungkin sebelum penyebaran sel kanker ke organ internal. Pada perkembangan saat ini, terdapat teknologi micro-array yang memiliki pengaruh besar dalam menentukan gen in-formatif menyebabkan kanker. Penelitian ini mengguna-kan da-ta microarray “prostate cancer”. Ekspresi gen yang ter-dapat pa-da data microarray “prostate” dapat digunakan untuk mengklasi-fikasikan pasien yang mengalami tumor prostat dan normal. Penelitian ini diperoleh hasil klasifikasi Fuzzy Support Vector Ma-chine (FSVM)dengan menggunakan seleksi Fast Correlation Ba-sed Filter(FCBF) tanpa optimasi genetic algorithm menghasilkan nilai akurasi lebih tinggi dibandingkan tanpa seleksi. Selain itu, diperoleh juga nilai akurasi klasifikasi FSVM dengan menggu-nakan seleksi dan optimasi genetic algorithm lebih tinggi diban-dingkan tanpa seleksi.

Keywords


Fast Corelation Based Filter; Fuzzy Support Vector Machine; Genetic algorithm; Microarray

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/sains_seni.