Klasifikasi Hasil Pap Smear Test Sebagai Upaya Pencegahan Sekunder Penyakit Kanker Serviks di Rumah Sakit “X” Surabaya Menggunakan Piecewise Polynomial Smooth Support Vector Machine (PPSSVM)

Mukti Ratna Dewi, Santi Wulan Purnami
Submission Date: 2015-02-02 15:27:23
Accepted Date: 2015-03-16 09:16:43

Abstract


Kanker serviks merupakan kanker yang menyerang leher rahim dan ditandai dengan pertumbuhan abnormal pada sel leher rahim. Berdasarkan data Riset Kesehatan Dasar tahun 2013, kanker serviks merupakan salah satu kanker yang paling sering menyerang perempuan di Indonesia. Oleh karena itu pencegahan sekunder melalui deteksi dini penting dilakukan. Penelitian ini mengangkat permasalahan klasifikasi hasil pap smear test di Rumah Sakit “X” Surabaya tahun 2010 yang didasarkan pada ketujuh faktor risiko, yaitu usia, usia pertama kali menstruasi, usia pertama kali melahirkan, siklus menstruasi, penggunaan alat kontrasepsi, paritas, dan riwayat keguguran menggunakan metode SSVM dengan piecewise polynomial function 1 (PPSSVM1) dan piecewise polynomial function 2 (PPSSVM2). Hasil penelitian menunjukkan bahwa dari 3586 pasien yang melakukan pap smear test, 1172 di antaranya menunjukkan hasil abnormal. Pada hasil klasifikasi pap smear test, metode PPSSVM1 memiliki rata-rata tingkat sensitivitas tertinggi, yaitu 91,22% pada data training dan 94,66% pada data testing. Sementara metode PPSSVM2 memiliki rata-rata nilai akurasi dan spesifisitas tertinggi, yaitu 89,22% dan 88,53% pada data training serta 92,84% dan 91,12% untuk data testing. Berdasarkan kurva ROC dan nilai AUC, kedua metode PPSSVM sama-sama baik dalam kasus pengklasifikan hasil pap smear test di Rumah Sakit “X” Surabaya. Model PPSSVM1 lebih baik digunakan bila tingkat sensitivitas lebih diutamakan. Sementara bila tingkat spesifisitas lebih diutamakan maka model PPSSVM2 lebih baik untuk digunakan.

Keywords


kanker serviks;pap smear test;klasifikasi;SSVM;PPSSVM

References


Globocan, “GLOBOCAN 2012 : Estimated Cancer Incidence, Mortality and Prevelence Worldwide in 2012,” 2012. [Online]. Available: http://globocan.iarc.fr/Pages/fact_sheets_cancer.aspx.

Dinas Kesehatan, “Hilangkan Mitos Tentang Kanker,” Kementerian Kesehatan Republik Indonesia, Jakarta, 2014.

IARC, “List of Classifications by Cancer Sites with Sufficient or Limited Evidence in Humans,” vol. 1, 2014.

H. Nurwijaya, Andrijono dan H. Suheimi, Cegah dan Deteksi Kanker Serviks, Jakarta: Elex Media, 2010.

Cancer Research UK, “Cervical Cancer Risk Factors,” 8 Agustus 2014. [Online]. Available: http://www.cancerresearchuk.org/cancer-info/cancerstats/types/cervix/riskfactors/cervical-cancer-risk-factors.

I. Yakasai, E. Ugwa dan J. Otubu, “Gynecological Malignancies in Aminu Kano Teaching Hospital Kano : A 3 Years Review,” Nigerian Journal of Clinical Practice, vol. 16, no. 1, pp. 63-66, 2 Februari 2013.

R. T. Fatmawati, “Hubungan Paritas dengan Kejadian Kanker Serviks di Ruang Merak RSUD dr. Soetomo Surabaya,” Surabaya, 2012.

S. Sjamsuddin, “Pencegahan dan Deteksi Dini Kanker Serviks,” Cermin DUnia Kedokteran, no. 133, pp. 9-14, 2001.

S. Dalimartha, Deteksi Dini Kanker dan Simplisia Antikanker, Jakarta: Penebar Swadaya, 2004.

D. S. Tira, “Risiko Jumlah Perkawinan, Riwayat Abortus, dan Pemakaian Alat Kontrasepsi Hormonal Terhadap Kejadian Kanker Serviks di Rumah Sakit Pelamonia Makassar Tahun 2006-2007,” 2008.

A. Abbas, “Beberapa Faktor Risiko Kanker Serviks di Perjan RSUP. dr. Wahidin Sudirohusoso Makassar Tahun 2012,” Makassar, 2003.

C. Cortes dan V. Vapnik, “Support-Vector Networks,” Machine Learning, vol. 20, no. 3, pp. 273-297, 1 September 1995.

Y. J. Lee dan O. L. Mangasarian, “SSVM: A Smooth Support Vector Machine for Classification,” Computational Optimization and Applications, vol. 20, pp. 5-22, 2001.

Y. Yuan dan T. Huang, “A Polynomial Smooth Support Vector Machine for Classification,” Advanced Data Mining and Applications, vol. 3584, pp. 157-164, 22-24 July 2005.

L. Luo, H. Peng dan Q. Zhou, “A Study on Piecewise Polynomial Smooth Approximation to The Plus Function,” dalam International Conference on Control, Automation, Robotics and Vision, Singapura, 2006.

Y. Yuan, W. Fan dan D. Pu, “Spline Function Smooth Support Vector Machine for Classification,” Journal of Industrial and Management Optimization (JIMO), vol. 3, no. 3, pp. 529-542, Agustus 2007.

S. Purnami, A. Embong, J. Zain dan S. Rahayu, “A Comparison of Smoothing Function in Smooth Support Vector Machine,” dalam International Conference on Software Engineering and Computer Systems, 2009a.

S. Purnami, A. Embong, J. Zain dan S. Rahayu, “Application of Data Mining Technique Using Best Polynomial SMooth Support Vector Machine in Breast Cancer Diagnosis,” dalam International Conference in Robotic, Vision, Signal Symposisum and Power Application (Rovsip), Langkawi Kedah, Malaysia, 2009b.

Q. Wu dan W. Wang, “Piecewise-Smooth Support Vector Machine for Clasification,” Hindawi Publishing Corporation Matematical Problems in Engineering, 2013.

I. Wulandari, “Piecewise Polynomial Smooth Support Vector Machine Untuk Klasifikasi Desa Tertinggal di Provinsi Kalimantan Timur Tahun 2011,” ITS Press, Surabaya, 2014.

Y. Yuan, J. Yan dan C. Xu, “Polynomial Smooth Support Vector Machine (PSSVM),” Chinese Journal of Computers, vol. 28, pp. 9-17, 2005.

C. M. Huang, Y. J. Lee, D. K. J. Lin dan S. Y. Huang, “Model Selection for Support Vector Machines via Uniform Design,” Computational Statistics & Data Analysis, vol. 52, no. 1, pp. 335-346, 1 Februari 2007.

W. Zhu, N. Zeng dan N. Wang, “Sensitivity, Specificity, Accuracy, Associated Confidence Interval and ROC Analysis with Pratical SAS Implementations,” dalam NESUG proceedings : Health Care and Life Sciences, 2010.

A. R. V. Erke dan P. M. T. Pattynama, “Receiver operating characteristic (ROC) analysis: Basic principles and applications in radiology,” European Journal of Radiology, pp. 88-94, 1998.

S. Chou, J. Shan, Y. Guo dan L. Zhang, “Automated Breast Cancer Detection and Classification Using Ultrasound Image : A Survey, Pattern Recognition,” vol. 43, pp. 299-317, 2010.

E. Colak, F. Mutlu, C. Bal, S. Oner, K. Ozdamar, B. Gok dan Y. Cavusoglu, “Comparison of Semiparametric, Parametric, and Nonparametric ROC Analysis for Continuous Diagnostic Tests Using a Simulation Study and Acute Coronary Syndrome Data,” Computational and Mathematical Methods in Medicine, vol. 2012, p. 7, 2012.

Australian Department of Health, “National Cervical Screening Program,” 19 November 2013. [Online]. Available: http://www.cancerscreening.gov.au/internet/screening/publishing.nsf/Content/papsmear#1. [Diakses 21 Agustus 2014].

H. Sain, “Combine Sampling Support Vector Machine untuk Klasifikasi Data Imbalanced,” ITS Press, Surabaya, 2013.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.