Implementasi Ekstraksi Fitur untuk Pengelompokan Berkas Musik Berdasarkan Kemiripan Karakteristik Suara

Ramadhan Rosihadi Perdana, Rully Soelaiman, Chastine Fatichah
Submission Date: 2017-01-24 17:24:49
Accepted Date: 2017-03-17 10:12:41

Abstract


Pengelompokkan musik berdasarkan karakteristik suara merupakan hal penting bagi penikmat musik.. Penikmat musik tidaklah mencari musik berdasarkan artis tetapi juga mencari musik berdasarkan genre yang diinginkannya. Karena itu dibutuhkan metode ekstraksi fitur yang tepat untuk dapat merepresentasikan berkas musik berdasarkan genre dengan baik. Studi ini melakukan ekstraksi fitur berkas musik. Dengan mengekstraksi fitur spectral centroid, spectral flux, spectral rolloff, dan short time energy pada tiap berkas musik yang diolah dan kemudian dihitung nilai mean, median, skewness, dan kurtosisnya. Dan selanjutnya dikelompokkan menggunakan metode klasifikasi Random Forest dengan alat bantu Weka untuk menguji kelayakan fitur yang dihasilkan. Uji coba dilakukan dengan menggunakan kombinasi nilai atribut komponen ekstraksi fitur dan berkas musik yang berbeda-beda sesuai genre. Hasil uji coba klasifikasi pada Studi ini menghasilkan nilai akurasi terbaik  sebesar 80.4%.

 


Keywords


Ekstraksi Fitur Audio; Musik; Klasifikasi

References


D. G. J. L. Babu Kaji Baniya, "Automatic Music Genre Classification Using Timbral Texture and Rhythmic Content Features," ICACT Transactions on Advanced Communications Technology (TACT), vol. 3, no. 3, 2014.

M. Rouse, "WhatIs.com," [Online]. Available: http://whatis.techtarget.com/definition/MP3-MPEG-1-Audio-Layer-3. [Accessed 12 1 2017].

"The Free Music Archive," [Online]. Available: http://freemusicarchive.org/. [Accessed 5 12 2016].

"Fast Fourier Transform - MATLAB & Simulink," [Online]. Available: https://www.mathworks.com/help/matlab/ref/fft.html. [Accessed 14 12 2016].

"Hamming Window - MATLAB hamming," [Online]. Available: https://www.mathworks.com/help/signal/ref/hamming.html. [Accessed 14 12 2016].

L. Breiman and A. Cutler, "Statistics at UC Berkeley, Department of Statistics," [Online]. Available: http://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm. [Accessed 1 December 2016].


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung