Rancang Bangun Aplikasi MusicMoo Dengan Metode MIR (Music Information Retrieval) Pada Modul Mood, Genre Recognition, dan Tempo Estimation

Johanes Andre Ridoean, Riyanarto Sarno, Dwi Sunaryono
Submission Date: 2017-01-25 13:24:06
Accepted Date: 2017-03-17 10:12:41

Abstract


Saat ini,metode pemanggilan kembali informasi suatu musik atau yang sering disebut Music Information Retrieval (MIR) telah banyak diterapkan. Contohnya adalah pada suatu aplikasi Shazam ataupun Soundhound. Tetapi kedua aplikasi ini hanya menangani sebatas lagu apakah yang terkait ketika diperdengarkan. Untuk itu, tujuan penelitian ini adalah pengembangan lebih lanjut MIR yang lebih spesifik lagi, yaitu melakukan pemanggilan informasi lagu yang terkait kembali beserta detail lagu di antaranya adalah mood, genre, dan tempo lagu. Penelitian ini memakai ekstraksi fitur berbasis MPEG-7 yang oleh library Java bernama MPEG7AudioEnc. Hasil ekstraksi fiur ini berupa metadata yang terkandung fitur-fitur dalam bentuk angka digital yang merepresentasikan karakteristik suatu sinyal. Lalu melakukan pengambilan suatu fitur sesuai dengan masing-masing dengan metode Xquery yang diimplementasikan oleh library Java bernama BaseX. Fitur yang diambil akan diproses dengan melakukan Discrete Wavelet Transform (DWT) beserta level dekomposisi terbaik oleh library Python bernama Pywt. Setelah fitur-fitur dilakukan DWT, maka dilakukan penggabungan fitur pada suatu list beserta penyamaan panjang fitur untuk proses klasifikasi. Tahap terakhir adalah melakukan klasifikasi dengan menggunakan Support Vector Machine (SVM). Terdiri dari 2 tahap yaitu tahap training dan prediksi. Hasil akurasi keberhasilan pada penelitian ini untuk modul mood 75%, genre 87,5% dan tempo 80%.

Keywords


Analisis Audio; MIR; MPEG-7; SVM

References


F. Wiering, “Can Humans Benefit from Music Information Retrieval?,” in Proceedings of the 4th International Conference on Adaptive Multimedia Retrieval: User, Context, and Feedback, Berlin, Heidelberg, 2007, pp. 82–94.

H.-G. Kim, N. Moreau, and T. Sikora, MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval. John Wiley & Sons, 2005.

ISO/IEC (2001), “Information Technology — Multimedia Content Description Interface — Part 4: Audio,” FDIS 15938-42001E, June.

Z. W. Ras and A. Wieczorkowska, Advances in Music Information Retrieval, 1st ed. Springer Publishing Company, Incorporated, 2010.

S. Li, H. Li, and L. Ma, “Music Genre Classification Based on MPEG-7 Audio Features,” in Proceedings of the Second International Conference on Internet Multimedia Computing and Service, New York, NY, USA, 2010, pp. 185–188.

R. X. Gao and R. Yan, Wavelets: Theory and Applications for Manufacturing, 2011 edition. New York; London: Springer, 2010.

B. T. Nugraha, R. Sarno, D. A. Asfani, T. Igasaki, and M. N. Munawar, “Classification of driver fatigue state based on EEG using Emotiv EPOC+,” J. Theor. Appl. Inf. Technol., vol. 86, no. 3, pp. 347–359, Apr. 2016.

R. Sarno, M. N. Munawar, B. T. Nugraha, R. Sarno, M. N. Munawar, and B. T. Nugraha, “Real-Time Electroencephalography-Based Emotion Recognition System,” Int. Rev. Comput. Softw. IRECOS, vol. 11, no. 5, pp. 456–465, May 2016.

R. Sarno, B. T. Nugraha, M. N. Munawar, R. Sarno, B. T. Nugraha, and M. N. Munawar, “Real Time Fatigue-Driver Detection from Electroencephalography Using Emotiv EPOC+,” Int. Rev. Comput. Softw. IRECOS, vol. 11, no. 3, pp. 214–223, Mar. 2016.

M. N. Munawar, R. Sarno, D. A. Asfani, T. Igasaki, and B. T. Nugraha, “Significant preprocessing method in EEG-Based emotions classification,” J. Theor. Appl. Inf. Technol., vol. 87, no. 2, pp. 176–190, May 2016.

D. R. Wijaya, R. Sarno, and E. Zulaika, “Information Quality Ratio as a novel metric for mother wavelet selection,” Chemom. Intell. Lab. Syst., vol. 160, pp. 59–71, Jan. 2017.

M. Gruhne, R. Tous, J. Delgado, M. Doeller, and H. Kosch, “Introduction of an Mpeg-7 Query Format.”

B. Team, “The XML Database,” 27-May-2015. [Online]. Available: http://basex.org/home/. [Accessed: 15-Jan-2017].

M. Soleymani, M. N. Caro, E. M. Schmidt, C. Ya Sha, and Y.-H. Yang, “Emotion in Music Database - MediaEval 2013 - aka 1000 songs.” [Online]. Available: http://cvml.unige.ch/databases/emoMusic/. [Accessed: 19-Dec-2016].

M. Soleymani, M. N. Caro, E. M. Schmidt, C.-Y. Sha, and Y.-H. Yang, “1000 Songs for Emotional Analysis of Music,” Proc. ACM Int. Multimed. Conf. Exhib., vol. 6, no. 1, pp. 1–14, 2015.

D. Hume, Emotion and Moods. Organizational behavior, 2012.

“About the Music Genres List Site,” Music Genres List. [Online]. Available: http://www.musicgenreslist.com/about-music-genre-site/. [Accessed: 15-Jan-2017].

Y.-Y. Chang and Y.-C. Lin, “Music Tempo (Speed) Classification,” 2005.

“MixMeister BPM Analyzer,” Softonic. [Online]. Available: https://mixmeister-bpm-analyzer.en.softonic.com/. [Accessed: 15-Jan-2017].

M. Nardelli, G. Valenza, A. Greco, A. Lanata, and E. P. Scilingo, “Recognizing Emotions Induced by Affective Sounds through Heart Rate Variability,” IEEE Trans. Affect. Comput., vol. 6, no. 4, pp. 385–394, Oct. 2015.

C.-H. Lin et al., “SVM-Based Sound Classification Based on MPEG-7 Audio LLDs and Related Enhanced Features,” in Convergence and Hybrid Information Technology, 2012, pp. 536–543.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung