Implementasi Deteksi Seam Carving Berdasarkan Perubahan Ukuran Citra Menggunakan Local Binary Patterns dan Support Vector Machine

Ayu Kardina Sukmawati, Nanik Suciati, Dini Adni Navastara
Submission Date: 2017-07-19 17:18:37
Accepted Date: 2018-01-09 21:27:31

Abstract


Seam carving adalah metode yang digunakan untuk content-aware image resizing. Seam carving bertujuan untuk mengubah ukuran citra atau image resizing dengan tidak menghilangkan konten penting yang ada pada citra. Dalam bidang forensik digital, seam carving banyak dibahas khususnya tentang deteksi seam carving pada citra. Hal tersebut bertujuan untuk mengetahui apakah suatu citra sudah pernah melalui proses pengubahan ukuran menggunakan seam carving atau belum.Tugas akhir ini mengusulkan sebuah metode deteksi seam carving berdasarkan perubahan ukuran citra menggunakan Local Binary Patterns dan Support Vector Machine. Citra yang akan dideteksi dihitung variasi teksturnya menggunakan Local Binary Patterns. Proses selanjutnya adalah ekstraksi fitur dari distribusi energy yang menghasilkan 24 fitur. Data fitur citra selanjutnya dilakukan proses normalisasi. Uji coba fitur menggunakan k-fold cross validation dengan membagi data menjadi training dan testing. Selanjutnya data tersebut akan memasuki proses klasifikasi menggunakan Support Vector Machine dengan kernel Radial Basis Function.Uji coba dilakukan terhadap citra asli dan citra seam carving. Citra seam carving yang digunakan dibedakanviiiberdasarkan skala rasionya yaitu 10%, 20%, 30%, 40%, dan 50%. Jumlah data yang digunakan adalah sebanyak 400 citra untuk setiap uji coba pada tiap skala rasio dengan menggunakan 10-fold cross validation. Rata-rata akurasi terbaik yang dihasilkan sebesar 73,95%.

Keywords


seam carving; Local Binary Patterns; k-fold cross validation; Support Vector Machine; Radial Basis Function kernel

References


S. Battiato, G. M. Farinella, G. Puglisi, dan D. Ravì, “Content-aware image resizing with seam selection based on Gradient Vector Flow,” in 2012 19th IEEE International Conference on Image Processing, 2012, hal. 2117–2120.

P. Zargham dan S. Nassirpour, “Content-Aware Image Resizing,” Electrical Engineering Department, Stanford University, Stanford, CA, Project Report EE368.

“Seam carving,” Wikipedia. 01-Des-2016.

T. Yin, G. Yang, L. Li, D. Zhang, dan X. Sun, “Detecting seam carving based image resizing using local binary patterns,” Comput. Secur., vol. 55, hal. 130–141, Nov 2015.

S.-J. Ryu, H.-Y. Lee, dan H.-K. Lee, “Detecting Trace of Seam Carving for Forensic Analysis,” IEICE Trans. Inf. Syst., vol. E97.D, no. 5, hal. 1304–1311, 2014.

“Local binary patterns,” Wikipedia. 06-Des-2016.

“Supervised Learning - MATLAB & Simulink.” [Daring]. Tersedia pada: https://www.mathworks.com/discovery/supervised-learning.html. [Diakses: 14-Des-2016].

“UCID - Uncompressed Colour Image Database.” [Daring]. Tersedia pada: http://homepages.lboro.ac.uk/~cogs/datasets/ucid/ucid.html. [Diakses: 13-Des-2016].

“What Is Seam Carving? An Explanation And Tutorial [VIDEO],” Creators. [Daring]. Tersedia pada: https://creators.vice.com/en_uk/article/what-is-seam-carving-an-explanation-and-tutorial-video. [Diakses: 19-Mei-2017].

“Dynamic programming,” Wikipedia. 26-Mei-2017.

@topcoder, “Dynamic Programming – From Novice to Advanced – topcoder.” .

“Wiener Filtering and Image Processing.” [Daring]. Tersedia pada: https://www.clear.rice.edu/elec431/projects95/lords/wiener.html. [Diakses: 01-Jun-2017].

“Wiener Filtering -- Theory.” [Daring]. Tersedia pada: http://www.cs.tau.ac.il/~turkel/notes/wiener_theory.html. [Diakses: 01-Jun-2017].

“Minimum Mean Suare Error (Wiener) Filtering,” in Digital Image Processing, Third., Upper Sadle River, New Jersey 07458: Pearson Education, Inc, hal. 352–357.

“Support vector machine,” Wikipedia. 23-Mei-2017.

“Support Vector Machines for Binary Classification - MATLAB & Simulink.” [Daring]. Tersedia pada: https://www.mathworks.com/help/stats/support-vector-machines-for-binary-classification.html. [Diakses: 02-Jun-2017].

“Radial basis function kernel,” Wikipedia. 28-Apr-2017.

“Sebastian Raschka’s Website,” Sebastian Raschka’s Website. [Daring]. Tersedia pada: sebastianraschka.com/. [Diakses: 02-Jun-2017].

J. Vanschoren, “OpenML,” OpenML: exploring machine learning better, together. [Daring]. Tersedia pada: https://www.openml.org. [Diakses: 02-Jun-2017].


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung