Pemeringkatan Perguruan Tinggi Menggunakan Metode Probabilistic Latent Semantic Analysis (pLSA) untuk Mengukur Tingkat Kesiapterapan Teknologi di Indonesia

Donny Aliyanto, Bagus Satya Rintyarna
Submission Date: 2017-07-25 14:32:14
Accepted Date: 2018-01-09 21:27:32

Abstract


Meningkatnya persaingan global di dunia pendidikan saat ini mendorong perguruan tinggi di dunia termasuk Indonesia bisa bersaing dengan perguruan tinggi kelas dunia (World Class University / WCU). QS World University Rankings adalah salah satu publikasi tahunan pemeringkatan universitas berdasarkan enam indikator oleh Quacquarelli Symonds (QS). Salah satu indikatornya adalah Reputasi Akademik yang menggunakan metode survei secara manual untuk mengevaluasi bobotnya. Makalah ini mengajukan konsep baru untuk Pemeringkatan Universitas di Indonesia dengan menggunakan metode Probabilistic Latent Semantic Analysis (PLSA) dengan menggunakan topik utama yaitu jurnal akademik yang dilakukan secara otomatis untuk memperkirakan nilai kriteria secara kualitatif berdasarkan tingkat kesiapterapan teknologinya. Penggunaan metode Probabilistic Latent Semantic Analysis (PLSA) dapat digunakan sebagai alternatif untuk menentukan reputasi akademik perguruan tinggi dengan survei manual, dengan ground truth 80,00%, perbedaan gap yaitu 10, dan toleransi perbedaan peringkat yaitu 88,88%.

Keywords


Reputasi Akademik, Probabilistic Latent Semantic Analysis, PLSA, Expectation Maximization, Pemeringkatan Universitas

References


K. S. Reddy, E. Xie and Q. Tang, "Higher education, high-impact research, and world university rankings: A Case of India and comparison with China," Pacific Science Review B: Humanities and Social Sciences, vol. 2, no. 1, pp. 1-21, 2016.

Tatiana Sidorenko, Tatiana Gorbatova, "Efficiency of Russian Education Through The Scale of World University Rankings," Procedia - Social and Behavioral Sciences, vol. 166, pp. 464-467, 2015.

Anne Wil K. Harzing, Ron van der Wal, "Google Scholar As a New Source for Citation Analysis," Ethics in Science and Environtmental Politics, vol. 8, no. 1, pp. 61-73, 2008.

Peter Serdyukov , "Journal of Research," Department of Teacher Education, School of Education, vol. 320, no. 1, pp. 10-11, 2014.

Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia, "Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor 42 Tahun 2016 Tentang Pengukuran dan Penetapan Tingkat Kesiapterapan Teknologi," Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia, Jakarta, 2016.

Adina - Petruta Pavel, "Global University Rankings - A Comparative Analysis," Procedia Economics and Finance, vol. 26, pp. 54-63, 2015.

Mu-Hsuan Huang, "Opening The Black Box of QS World University Rankings," Research Evaluation, vol. 21, no. 1, pp. 71-78, 2012.

Jin Wang, Ping Liu, Mary F.H. She, Abbas Kouzani, Saeid Nahavandi, "Supervised learning probabilistic Latent Semantic Analysis," vol. 1, no. 1, p. 139, 2012.

Center of Teaching and Learning Stanford University, "Bloom's Taxonomy of Educational Objectives," Stanford University, California, 1981.

Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia, "Peraturan Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia Nomor 42 Tahun 2016 Tentang Pengukuran dan Penetapan Tingkat Kesiapterapan Teknologi," Menteri Riset, Teknologi, dan Pendidikan Tinggi Republik Indonesia, Jakarta, 2016.

T. Verma, "Tokenization and Filtering Process in RapidMiner," Int. J. Appl. Inf. Syst. – ISSN 2249-0868 Found. Comput. Sci. FCS, vol. 7, no. 2, p. 16–18, 2014 .

Ferilli.S., F. Esposito and D. Grieco, "Automatic learning of linguistic resources for stopword removal and stemming from Text," Procedia Comput. Sci, vol. 38, no. 1, p. 116–123, 2014.

Bagus Setya Rintyarna, Riyanarto Sarno, "Adapted weighted graph for Word Sense Disambiguation," in International Conference on Information and Communication Technology (ICoICT), Bandung, Indonesia, 2016.

h. K. Landauer, e. W. Foltz and a. Laham, "An Introduction to Latent Semantic Analysis," vol. 1, no. 1, pp. 259-284.

D. Blei, L. Carin and D. Dunson, "Probabilistic topic models," IEEE Signal Process. Mag, vol. 27, no. 1, pp. 55-56, 2010.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung