Rancang Bangun Sistem Pengendali Kadar Oksigen Terlarut dengan Algoritma Fuzzy Logic Controller pada Budidaya Akuaponik

Alberto Riolly Cahyantara, Hendra Cordova
Submission Date: 2017-07-27 12:15:08
Accepted Date: 2018-01-09 21:27:31

Abstract


Dalam budidaya akuaponik, kadar oksigen terlarut sangatlah penting karena mempengaruhi laju pertumbuhan ikan dan tanaman. Untuk menjaga kadar oksigen pada standar baku mutu air (set point), maka laju aerasi harus dimanipulasi dengan mengatur kerja pompa aerator. Langkah awal adalah dengan mengetahui karakteristik pompa aerator terhadap peningkatan kadar oksigen terlarut pada akuaponik. Selanjutnya algoritma fuzzy logic controller dibuat dan digunakan untuk menentukan variabel manipulasi dari pompa aerator pada akuaponik. Dengan menggunakan algoritma Fuzzy logic controller, kontrol kadar oksigen terlarut dapat dikontrol dan didapatkan nilai maximum overshoot (Mp) 1.27%, rise time (tr) 211 detik, settling time (ts)575 detik, ess 0.07 mg/L atau 1%. Fuzzy logic contoller mampu mengatasi gangguan dan mengikuti perubahan set point yang diberikan. Dengan kontrol kadar oksigen terlarut pada akuaponik, terjadi kenaikan laju pertumbuhan ikan sebesar 0.21 gram dan peningkatan tinggi tanaman sebesar 1.2 cm selama 10 hari pengamatan.


Keywords


oksigen terlarut; fuzzy logic controller; akuaponik; laju pertumbuhan

References


Eutech Instruments. (1997). Dissolved Oxygen Electrodes. Tech Tips.

Amand, L., Olsson, G., & Carlsson, B. (2013). Aeration control - a review. Water Science and Technology, 67(11), 2374-23398.

Amri, K., & Khairuman. (2003). Budidaya Ikan Nila Secara Intensif. Jakarta: PT. Agromedia Pustaka.

Atlas Scientific. (2016). A practical guide for understanding dissolved oxygen reading. New York: Atlas Scientific.

Badan Standardisasi Nasional. (2009). Produksi Ikan Nila (Oreochromis Niloticus Bleeker) Kelas Pembesaran di Kolam Air Tenang. Jakarta: BSNI.

Cherif, M., Tirilly, Y., & Belanger, R. R. (1997). Effect of oxygen concentration on plant growth, lipidperoxidation, and receptivity of tomato roots to Pythium F under hydroponic conditions. European Journal of Plant Pathology, 103(3), 255-264.

Finesse, LLC. (n.d.). Dissolved Oxygen Sensor Primer. Santa Clara: Finesse.

Food and Agriculture Organization of the United Nations. (2011). The State of the World's Land and Water Resources for Food and Agriculture. London: Earthscan.

Food and Agriculture Organization of United Nations. (2016). The State of World Fisheries and Aquaculture. Rome.

Francis, R., & Floyd. (2014). Dissolved Oxygen for Fish Production. Gainesville: University of Florida.

Gislerod, H. R., & Kempton, R. J. (1983, May). The oxygen content of flowing nutrient solutions used for cucumber and tomato culture. Scientia Horticulturae, 20, 23-33.

Goddek, S., Delaide, B., Mankasingh, U., & Ragnarsdottir, K. V. (2015). Challenges of Sustainable and Commercial Aquaponics. Sustainability, 7, 4199-4224.

Hargreaves, J. A., & Tucker, C. S. (2002). Measuring Dissolved Oxygen Concentration In Aquaculture. Stoneville: Southern Regional Aquaculture Center.

Jegatheesan, V., Shu, L., & Visvanathan, C. (2011). Aquaculture Effluent: Impacts and Remedies for Protecting the Environment and Human Health. Encyclopedia of Environmental Health, 123-135.

Ladon, L. (2001). Electrochemistry. Towson University.

Larsen, D. (2014, 4 20). Electrochemical Cell Conventions. Diambil kembali dari UCDavis ChemWiki: https://chem.libretexts.org/Core/Analytical_Chemistry/Electrochemistry/Voltaic_Cells/Electrochemical_Cell_Conventions

Mallya, Y. J. (2007). The Effects of Dissolved Oxygen on Fish Growth in Aquaculture. Reykjavik, Iceland: Ministry of Natural Resources and Tourism.

McGraw, W., Teichert-Coddington, D. R., Rouse, D. B., & Boyd, C. E. (2001, August). Higher minimum dissolved oxygen concentrations increase penaeid shrimp yields in earthen ponds. Aquaculture, 199, 311-321.

Mudjiman, A. (2001). Makanan Ikan. Jakarta: Penebar Swadaya.

Ogata, K. (2010). Modern Control Engineering 5th Edition. New Jersey: Prentice Hall.

Papoutsoglou, S. E., & Tziha, G. (1996, May). Blue tilapia (Oreochromis aureus) growth rate in relation to dissolved oxygen concentration under recirculated water conditions. Aquacultural Engineering, 15(3), 181-192.

Piotrowski, R., & Skiba, A. (2015). Nonlinear Fuzzy Control System for Dissolved Oxygen with Aeration System in Sequencing Batch Reactor. Information Technology and Control, 44(2), 182-195.

Rakocy, J., & Hargreaves, J. (1993). Integration of Vegetable Hydroponic with Fish Culture: A Review In. Techniques for Modern Aquaculture, 21-23.

Santosa, B. (2001). Budidaya Ikan Nila. Yogyakarta: Kanisius.

Sari, I. G. (2014). Budidaya Ikan dan Tanaman dengan Sistem Akuaponik. Purwokerto: Universitas Soedirman.

Seginer, I., & Mozes, N. (2012). A note on oxygen supply in RAS: The effect of water temperature. Aquaculture Engineering, 50, 45-54.

Soffer, H., Burger, D. W., & Lieth, J. H. (1991, January). Plant growth and development of Chrysanthemum and Ficus in aero-hydroponics: response to low dissolved oxygen concentrations. Scientia Horticulturae, 45(3-4), 287-294.

Sucipto , A., & Prihartono, R. E. (2005). Pembesaran Nila Merah Bangkok. Jakarta: Penebar Swadaya.

Thermo Electron Corporation. (n.d.). Orion DO Theory. In The Technical Edge. Thermo Electron Corporation.

Timmons, M. B., Ebeling, J. M., Wheaton, F. W., Summerfelt, S. T., & Vinci, B. J. (2007). Recirculating aquaculture.

Tran-Ngoc, K. T., Dinh, N. T., Nguyen, T. H., Roem, A. J., Schrama, J. W., & Varreth, J. A. (2016, September). Interaction between dissolved oxygen concentration and diet composition on growth, digestibility and intestinal health of Nile tilapia. Aquaculture, 462, 101-108.

Watt, M. K. (2000). A Hydrologic Primer for New Jersey Watershed Management (Water-Resources Investigation Report 00-4140). West Trenton: U.S. Geological Survey.

Wilkin, R. T., & Ptacek, C. J. (2000). Field Measurement of Geochemical Redox Parameters. Workshop on Monitoring Oxidation-Reduction Processes for Groundwater Restoration.

World Resources Institute. (2015, May). The Great Balancing Act. Diambil kembali dari World Resources Institute: http://www.wri.org/publication/great-balancing-act

Yoshida, S., Kitano, M., & Eguchi, H. (1997). Growth of lettuce plants (Lactuca sativa L.) under control of dissolved O2 concentration in hydroponics. Biotronic, 29, 39-45.

YSI. (2009). The Dissolved Oxygen Handbook. YSI Incorporated.

YSI Incorporated. (2008). Pro20 User Manual. YSI Incorporated.


Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung