Pemodelan Multilabel Tweet Media Sosial Mahasiswa untuk Klasifikasi Keluhan

Muhammad Faris Musthafa, Joko Lianto Buliali, Victor Hariadi
Submission Date: 2018-01-26 12:31:13
Accepted Date: 2018-07-18 14:51:59

Abstract


Pada umumnya sistem informasi akademik di sebuah perguruan tinggi memiliki fitur umum bagi dosen untuk memantau proses perkembangan akademik anak walinya secara aktif. Namun jika dosen wali ataupun orang tua tidak melakukan pantauan secara aktif maka mahasiswa wali yang memiliki permasalahan akademik berisiko drop out dalam proses evaluasi tingkat 1 universitas karena rendahnya pemahaman dosen terhadap mahasiswa walinya. Tujuan dari penelitian ini adalah membuat rancangan model deteksi keluhan dalam data tweet mahasiswa. Aspek keluhan bisa dibagi mennjadi empat kategori: keluhan personal, keluhan subjek, keluhan relasi, dan keluhan institusi. Metode multilabel yang digunakan adalah Binary Relevance dengan pilihan classifier Naïve Bayes, Simple Logistic, KStar, Decision Table, dan j48. Berdasarkan hasil pengujian ada berbagai classifier, Naïve Bayes memiliki performa tertinggi baik dalam aspek akurasi maupun waktu eksekusi. Hasil implementasi sistem deteksi multilabel keluhan menggunakan classifier Naïve Bayes pada delapan puluh data uji yterhadap label keluhan personal, subjek, relasi, dan institusi memiliki akurasi masing-masing bernilai 76.47%, 75%, 80%, dan 80%. Hasil deteksi multilabel keluhan yang ditemukan berpotensi digunakan lebih lanjut pada konteks yang lebih luas

Keywords


Deteksi Keluhan; Kegagalan Akademik; Pemodelan Prediksi; Multilabel; Media Sosial

References