Sintesis dan Karakterisasi Struktur Padatan NiO/CaF₂ dengan Difraksi Sinar-X

Akda Z. Wathoni dan Irmina K. Murwani Kimia, FMIPA, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111 *E-mail*: irmina@chem.its.ac.id

Abstrak— Sifat keasaman NiO dapat digunakan sebagai katalis dalam sintesis yang mengikuti reaksi Friedel-Crafts. Pada penelitian ini, telah dilakukan sintesis padatan CaF₂ dan NiO/CaF₂ padat dengan variasi loading Ni (2,5; 5,0; 7,5, 10 dan 15% w/w) dan karakterisasi struktur padatan menggunakan X-ray difraksi. Difraktogram CaF₂ hasil sintesis menunjukkan puncak yang sesuai dengan data base JCPDS-Internasional Centres for Diffraction Data tahun 1997 dengan nomer PDF 35-0816. Difraktogram padatan impregnasi NiO/CaF₂ hasil sintesis menunjukkan bahwa gabungan dari puncak NiO dan CaF₂, semakin tinggi jumlah loading Ni intensitas puncak NiO semakin tinggi pula.

Kata Kunci—Impregnasi, NiO/CaF2, X-ray difraksi

I. PENDAHULUAN

NIKEL merupakan logam yang mempunyai sifat asam lewis sehingga logam ini cocok digunakan sebagai katalis asam seperti reaksi alkilasi Friedel-Craft. Hal tersebut dibuktikan dengan penggunaan $NiCl_2$ berpendukung hidroksiapatit (HAP) sebagai katalis untuk reaksi alkilasi Fiedel-Craft benzene, toluene dan p-xilena dengan benzil klorida oleh Sebti, dkk. [1]. Selain itu padatan NiO juga dapat diaplikasikan sebagai penyimpan energy dan electrochromic windows [2]. Sedangkan aplikasi dari CaF₂ dapat digunakan pada berbagai aplikasi optik seperti sebagai elemen dispersif di inframerah, monokromator, filter untuk mengurangi stray light dan elemen anti radiasi, untuk lensa, elemen laser dan lapisan tipis antirefleksi pada lensa kaca [3].

Pada penelitian ini padatan NiO diimpregnasikan ke padatan CaF₂ untuk memperluas permukaan padatan yang diharapkan dapat digunakan sebagai katalis yang memiliki aktivitas dan selektivitas lebih besar. Padatan CaF₂ dipilih sebagai bahan pendukung (*support*) karena padatan ini memenuhi persyaratan sebagai pendukung [4]. Persyaratan pendukung yang harus dimiliki antara lain keinertan, stabilitas reaksi dan memiliki luas permukaan yang besar seperti yang dilaporkan oleh Perego pada tahun 2007 [5].

Mengingat pentingnya peranan padatan NiO dan CaF₂, maka pada penelitian ini disintesis padatan NiO/CaF₂ dengan metode impregnasi. Variasi *loading* Ni juga dilakukan untuk mengetahui pengaruh *loading* terhadap struktur padatan. Struktur padatan dikarakterisasi dengan X-ray difaksi.

II. METODOLOGI

A. Sintesis Padatan CaF₂, NiO dan NiO/CaF₂

Padatan CaF₂ disintesis dengan metode sol-gel yang diadopsi dari Murwani, dkk.[6]. Kalsium nitrat tetrahidrat dalam etanol direaksikan dengan HF dan diaduk hingga terbentuk gel, kemudian diperam (di*aging*) pada suhu kamar. Selanjutnya gel disaring dan dicuci dengan akuades. Gel yang telah dicuci dikeringkan pada suhu 100°C dan dikalsinasi pada suhu 400°C

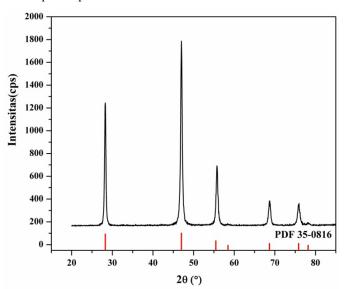
B. Sintesis Padatan NiO/CaF₂

Padatan berpendukung NiO/CaF₂ disintesis dengan metode impregnasi [2]. Impregnasi dilakukan dengan cara pengadukan dan pemanasan padatan CaF₂ dalam larutan NiCl₂•6H₂O hingga terbentuk bubur, kemudian dikeringkan hingga diperoleh padatan kering. Padatan yang diperoleh kemudian dikalsinasi pada 400°C. Metoda impregnasi ini dilakukan dengan variasi loading Ni yaitu 2,5; 5; 7,5; 10 dan 15 % w/w dalam CaF₂. Semua padatan yang diperoleh dikarakterisasi strukturnya dengan X-ray difraksi (XRD).

C. Karakterisasi Padatan dengan X-ray difraksi

Padatan hasil sintesis dikarakterisasi dengan X-ray difraksi (XRD JEOL JDX-3530 X-ray Diffactometer) untuk menentukan fase kristal dan kristalinitas. Padatan diambil masing-masing 1g diletakan pada sampel holder dan kemudian diradiasi dengan radiasi Cu K $_{\alpha}$ pada panjang gelombang λ =1.541Å, tegangan 40kV,arus 30mA dan jangkauan sudut 2θ = 20-80°.

III. HASIL DAN PEMBAHASAN


A. Pendukung CaF_2

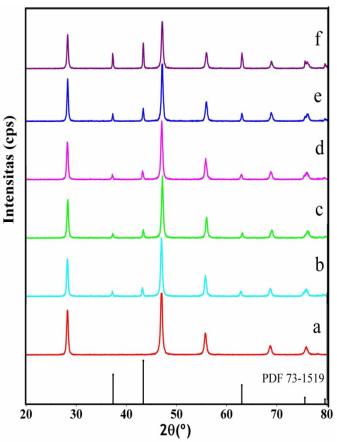
Padatan CaF₂ disintesis dengan mencampurkan serbuk padatan putih (Ca(NO₃)₂)•4H₂O yang dilarutkan dalam etanol absolute dengan HF. Kalsium nitrat tetrahidrat (Ca(NO₃)₂)•4H₂O bertindak sebagai prekursor kation Ca⁺, HF sebagai sumber anion F dan etanol sebagai pelarut selama reaksi. Pemilihan pelarut ini didasarkan pada literatur yang ditulis oleh Murthy dkk. tahun 2006 [7]. Penambahan HF ini harus dilakukan tetes demi tetes agar reaksi dapat berjalan dengan sempurna. Pada saat pencampuran ini terjadi perubahan larutan jernih tak berwarna menjadi putih keruh yang menunjukkan terbentuknya sol. Pengadukan terus

menerus pada sol ini mengakibatkan terjadinya polimerisasi sehingga terjadi proses gelasi membentuk gel. Gel merupakan jaringan yang lebih rapat dari pada sol. Kemudian gel diperam (diaging) sehingga diperoleh gel padat Setelah gel padat terbentuk dilakukan pemisahan gel dari pelarutnya dan dicuci dengan aquades. Gel padat yang diperoleh dikeringkan pada suhu 100°C dan dikalsinasi pada suhu 400°C selama 4 jam.

Reaksi secara umum pada sintesis CaF_2 yang terjadi adalah $(Ca(NO_3)_2)_{(etanol)} + 2HF_{(aq)} \longrightarrow CaF_{2(s)} + 2HNO_{3(aq)}$

Padatan tersebut kemudian dikarakterisasi strukturnya menggunakan *X-ray Diffraction* (XRD). Hasil karakterisasi ditampilkan pada Gambar 1.

Gambar 1. Difraktogram CaF₂


Hasil pencocokan menunjukkan kesesuaian dengan database PDF No.35-0816 yang merupakan kristal CaF₂ dengan sistem kubus berpusat muka. Puncak-puncak CaF₂ terletak pada 20: 28.27; 47; 55.48; 58.476; 68.674; 75.85 dan 78.19°. Selain itu difraktogram dicocokan dengan *database* prekursor Ca(NO₃)₂ dan kemungkinan produk lain yang terbentuk selama kalsinasi seperti CaO. Difraktogram tersebut menunjukkan bahwa hasil sintesis merupakan CaF₂ yang mempunyai fasa tunggal.

$B. NiO/CaF_2$

Sintesis NiO/CaF₂ diawali dengan pelarutan larutan NiCl₂ yang berwarna hijau muda dengan aquades hingga diperoleh larutan hijau tua. Larutan ini berwarna hijau tua merupakan indikasi bahwa didalam larutan terbentuk kompleks [Ni(H₂O)₆]Cl₂ seperti yang dilaporkan Gonzalez pada tahun 2009 [8]. Kemudian dicampurkan dengan padatan CaF₂ sambil diaduk terus menerus hingga terbentuk bubur. Pengamatan secara visual pada saat dilakukan impregnasi adalah terjadi perubahan warna padatan sebelum dan sesudah proses impregnasi. Padatan CaF₂ yang berwarna putih menjadi berwarna putih kehijauan setelah dilakukan impregnasi.

Semakin besar loading intensitas warna hijau pada padatan semakin bertambah. Hal tersebut dikarenakan jumlah Ni yang ditambahkan semakin banyak sehingga warna hijau yang khas dari [Ni(H₂O)₆]Cl₂ semakin tampak. Setelah kalsinasi, warna padatan menjadi hijau keabu-abuan (intesitas hijau berkurang).

Karakterisasi struktur padatan NiO/CaF₂ hasil impregnasi dilakukan dengan XRD. Difraktogram padatan hasil sintesis dengan masing-masing variasi *loading* Ni 2,5; 5; 7,5; 10 dan 15 % dicocokan dengan puncak-puncak NiO dari program PCPDFWIN *database* 1997 JCPDS-*International Centre for Diffraction Data* No. 73-1519 dan difraktogram padatan pendukung CaF₂ yang ditunjukkan pada Gambar 2. Difraktogram hasil karakterisasi menunjukkan adanya puncak-puncak karakteristik dari padatan NiO dan CaF₂ membuktikan bahwa proses impregnasi tidak menyebabkan rusaknya struktur padatan penyusun baik NiO maupun CaF₂ yang ditunjukkan dengan munculnya puncak-puncak NiO dan CaF₂.

Gambar. 2. Difraktogram: (a) CaF_2 , (b) 2,5% NiO/CaF_2 , (c) 5% NiO/CaF_2 , (d) 7,5% NiO/CaF_2 , (e) 10% NiO/CaF_2 dan (f) 15% NiO/CaF_2 .

Puncak dominan yang terlihat pada difraktogram NiO/CaF₂ adalah puncak-puncak yang dimiliki CaF₂. Intensitas puncak NiO sangat kecil dibandingkan dengan puncak CaF₂. Berdasarkan difraktogram tersebut terlihat jelas bahwa semakin besar jumlah *loading* Ni maka semakin tinggi intensitas puncak-puncak khas NiO, seperti yang ditunjukkan puncak pada 20 43,38°. Hal tersebut menunjukkan bahwa intensitas pada difraktogram dipengaruhi oleh jumlah konsentrasi NiO yang ditambahkan, hal ini juga sesuai dengan penelitian sebelumnya [9].

Tiga puncak khas NiO dengan intensitas tertinggi muncul pada difraktogram NiO/CaF₂ antara lain daerah 20 37,34; 43,38 dan 63,02°. Puncak NiO yang sudah mulai terlihat pada difraktogram NiO/CaF₂ dengan *loading* 7,5%. Munculnya puncak NiO pada difraktogram tersebut menunjukkan bahwa kristal NiO membentuk keteraturan pada permukaan pendukung CaF₂ sehingga dapat menghasilkan puncak khas NiO pada difraktogram NiO/CaF₂. Namun pada *loading* Ni: 2,5 dan 5 % puncak NiO tidak muncul dengan jelas hal ini menunjukkan bahwa partikel NiO terdispersi secara sempurna pada pori-pori permukaan CaF₂ sesuai dengan yang dikemukakan oleh Kim, dkk., [10].

IV. KESIMPULAN

Padatan CaF₂ dan NiO/CaF₂ telah berhasil disintesis dengan metode sol-gel. Karakterisasi struktur padatan CaF₂ hasil sintesis sesuai dengan *database JCPDS-Internasional Centres for Diffraction Data* tahun 1997 dengan nomer PDF 35-0816. Padatan impregnasi NiO/CaF₂ dengan berbagai variasi *loading* Ni menunjukkan bahwa semakin besar *loading* Ni semakin tinggi pula intensitas puncak khas NiO pada difraktogram yang dihasilkan.

UCAPAN TERIMA KASIH

Atas terselesaikanya penulisan naskah ini penulis A.Z. menyampaikan terima kasih kepada tim katalis dan jurusan Kimia FMIPA ITS serta kepada Laboratorium Kimia Material dan Energi yang telah memberi fasilitas selama penelitian ini berlangsung.

DAFTAR PUSTAKA

- [1] Sebti, S., dkk., "Comparation of Different Lewis Acid Supported on Hydroxypatite as New Catalysts of Fiedel Craft Alkylation," Applied Catalysis A: General, vol.218, , 2001, pp 25-30.
- [2] Nieuwenhuizen, "The versatility of nickel oxide," Interfacultary Project, 2004.
- [3] Bezuidenhout, "Handbook Of Optical Constants Of Solids II," Academic Press, Republic of South Africa, 1991, 815.
- [4] Quan, Heng-Dao, Tamura, M., Sekiya, A., Gao, Ren Xiao, "Preparation and application of porous calcium fluoride," A novel Fluorinating Reagent and Support Catalyst, vol.116, 2002, pp65-69.
- [5] Perego, C., dan Villa, P. 1997. "Catalyst Prearation Methods. Catalyst Today." vol. 34, 1997, pp281-305.
- [6] Murwani, I. K., Kemnitz, E., "Mechanism Investigation of Hydrodechlorination of 1,1,1,2-Tetrafluorodichloroethane on Metal Fluoride-Supported Pd and Pd". Catalysis Today. vol.88, 2004, pp 153-168
- [7] Murthy J. Krishna, Groß Udo, Rudiger Stephan, Unverena Ercan, Kemnitz Erhard,"Mixed metal fluorides as doped Lewis acidic catalyst systems: a comparative study involving novel high surface area metal fluorides," Journal of Fluorine Chemistry, vol.125, , 2004, pp 937–949.
- [8] Gonzalez José, "Synthesis of nickel complexes," 2009.
- [9] Deraz N.M., Selim M.M., Ramadan M., "Processing and properties of nanocrystalline Ni and NiO catalysts," Materials Chemistry and Physics, vol.113, 2009, pp 269–275.
- [10] Kim Pil, Kim Heesoo, Joo Ji Bong, Kim Wooyoung, Song In Kyu, Yi Jongheop, "Effect of nickel precursor on the catalytic performance of Ni/Al2O3 catalysts in the hydrodechlorination of 1,1,2-trichloroethane," Journal of Molecular Catalysis A: Chemical, vol.256, 2006, pp 178–183.