Analisis Risiko Keruntuhan Jacket Wellhead Tripod Platform Pasca Subsidence

Anggi Aulia, Handayanu, dan Daniel Mohammad Rosyid Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember (ITS) *e-mail*: handayanu@oe.its.ac.id

Abstrak-Selain terjadi di kota-kota besar, subsidence juga bisa terjadi di sekitar daerah eksploitasi minyak dan gas bumi baik onshore maupun offshore. Indikasi penurunan tanah dapat dilihat dari terjadinya penurunan anjungan lower deck yang semakin tenggelam secara fisik. Terjadinya subsidence dapat menyebabkan kegagalan struktur. Apabila terjadi kegagalan, struktur dapat mengalami berbagai kemungkinan konsekuensi yang bisa menimbulkan bahaya hingga kerugian. Mengingat konsekuensi dan kerugian yang mungkin terjadi, maka perlu dilakukan analisis risiko pada struktur dengan variasi kedalaman subsidence hingga struktur mengalami keruntuhan. Analisis keruntuhan dilakukan dengan meningkatkan beban lingkungan kondisi badai secara bertahap hingga struktur mengalami keruntuhan karena terbentuknya member plastis. Member plastis akan digunakan dalam analisis keandalan, dimana peluang kegagalan member dihitung dengan simulasi Monte Carlo dengan menggunakan Random Number Generator (RNG). Kemudian, keandalan sistem dihitung menggunakan Reliability Block Diagram (RBD) yang selanjutnya digunakan dalam analisis risiko. Kedalaman maksimum subsidence yang diizinkan agar struktur masih layak beroperasi sesuai API RP 2A WSD 21st edition adalah sebesar 5.2 meter dengan Reserve Strength Ratio (RSR) terkecil yakni 1.85. Analisis keandalan dilakukan untuk kondisi non subsidence hinga kondisi subsidence 5.2 meter dengan keandalan sistem terkecil sebesar 0.436 dan Probability of Failure (PoF) sebesar 0.564. Berdasarkan matriks risiko, diperoleh hasil bahwa struktur untuk kondisi non-subsidence dan subsidence konsekuensi safety berada di area kuning yang berarti medium risk merupakan daerah as low as reasonably practicable (ALARP), sedangkan untuk konsekuensi environment dan business berada di area merah yang berarti high risk.

Kata Kunci—ALARP, Keruntuhan, Monte Carlo, Reliability Block Diagram, Subsidence.

I. PENDAHULUAN

DI perairan Indonesia banyak digunakan *fixed platform* untuk proses eksplorasi dan produksi minyak dan gas bumi. Operasi dilakukan di perairan dangkal yakni pada kedalaman 0 - 400 meter. Jacket structure merupakan struktur yang terbuat dari baja tubular. Biasanya memiliki tiga, empat, enam, atau delapan kaki yang berfungsi untuk mengirimkan beban lingkungan dan beban topside menuju pile yang telah terpancang di seabed [1]. Dalam Perancangan struktur perlu dipertimbangkan mengenai beban apa saja yang nantinya akan diterima oleh struktur. Beban yang harus dipertimbangkan dalam Perancangan struktur bangunan lepas pantai menurut API RP 2A WSD 21st edition diantaranya ada beban mati (dead load), beban hidup (live load), beban lingkungan (environmental load), beban konstruksi, dan beban pengangkatan dan reinstalasi, serta beban akibat keceakaan (accidental load) [2]. Pada bangunan lepas pantai, faktor alam juga memberikan andil terkait beberapa masalah yang dapat mempengaruhi integritas struktur seperti adanya marine growth, terjadinya scouring, dan land subsidence [3].

Gambar 1. Lokasi ULA platform.

Indikasi penurunan tanah dapat dilihat dari terjadinya penurunan anjungan lower deck yang semakin tenggelam secara fisik [4]. Subsidence meningkatkan probabilitas puncak gelombang ekstrim menghempas deck struktur. Field Ekofisk yang dioperasikan oleh Philips Petroleum Company Norway pada tahun 1969. Merupakan lapangan minyak dan gas tertua di Norway. Subsidence di Ekofisk pertama ditemukan pada awal tahun 1980-an dengan perkiraan sebesar 8 meter. Sejak saat itu, banyak dilakukan structural reassessment hingga membuat subsidence mitigation project yang dimulai pada awal tahun 1990-an. Struktur diperkuat guna mengatasi dampak subsidence [5]. Terjadinya subsidence yang membuat kondisi seabed berubah dapat menyebabkan pergerakan pile group antar satu dengan yang lainnya, tingginya gaya kompresi di frame jacket paling bawah, terjadi perputaran pada bagian bawah kaki jacket, tegangan bending menjadi lebih tinggi pada pile, bertambahnya distribusi beban aksial sehingga membuat bertambahnya kekakuan aksial [6]. Subsidence memberikan dampak yang tidak baik untuk pondasi jacket yang telah didesain. Karena perubahan kondisi tanah membutuhkan peningkatan pasatitas tiang pancang dimana kekuatan tanah dari sisi horizontal dan vertikal menganggu pondasi desain *jacket* [6].

Pada tugas akhir ini, penulis akan melakukan analisis keruntuhan pada struktur pasca *subsidence* untuk menghitung *Reserve Strength Ratio* (RSR) dengan cara meingkatkan beban lingkungan kondisi badai secara bertahap hingga struktur runtuh dikarenakan terbentuknya member plastis. Member plastis akan digunakan dalam analisis keandalan, *probability of failure* masing-masing member akan digunakan untuk perhitungan keandalan sistem yang kemudian digunakan dalam analisis risiko. Struktur yang digunakan sebagai objek studi kasus dalam tugas akhir ini adalah ULA jacket wellhead tripod platform yang beroperasi di perairan Laut Jawa. Terletak di 6.1 km Barat Laut UW *Platform* dan 14 km arah Barat dari UPRO *Platform* dan berada pada kedalaman 74.875 ft. Kordinat letak *platform*

Tabel 1.										
		Data Li	ngkungan							
Retu	rn Period	Wind Speed (mph)	Max Wave Height (ft)	Max Wave Period (sec)						
1 – Y	ear	48	16.7	7.1						
100 -	- Year	80	16.7	7.1						
	Tabel 2. Kategori <i>Probability of Failure</i>									
~	Annual	Failure								
Cat	Probability		Description							
	Qty	Qlt								
5	>10-2	Failure Expected	 In a small pop more failures ca annually. Failure has of times a year company. 	oulation*, one or an be expected occurred several in operating						
4	10 ⁻³ – 10 ⁻²	High	 In a large population of the popula	ulation**, one or an be expected occurred several in operating						
3	10 ⁻⁴ – 10 ⁻³	Medium	 Several failt during the life of for a system con number of compo Failure has operating company 	tres may occur if the installation nprising a small nents. s occurred in ty.						
2	10 ⁻⁵ – 10 ⁻⁴	Low	 Several failuduring the life of for a system cornumber of compo Failure has industry. 	tres may occur the installation nprising a large nents. s occurred in						
1	<10 ⁻⁵	Negligible	(1) Failure is not (2)(2) Failure has industry.	expected. not occurred in						

Tabel 3. Kategori *Consequence of Failure*

Laval	Consequence of Failure				
Level	Safety	Environment	Business		
А	No Injury	No Pollution	No downtime or asset damage		
В	Minor Injury	Minor local effect. Can be cleaned up easily	< € 10.000 damage or downtime < one shift		
С	Major Injury	Significant local effect. Will take more than 1 man week to remove	$< \in 100.000$ damage or downtime < 4 shift		
D	Single fatality	Pollution has significant effect upon the surrounding ecosystem (e.g. population of birds or fish).	< € 1.000.000 damage or downtime < one month		
Е	Multiple Fatality	Pollution that can cause massive and irreparable damage to ecosystem	< € 10.000.000 damage or downtime < one year		

yakni pada: *Latitude*: 06° 5' 39.44" S, *Longitude*: 107° 42' 29.07" E. Seperti yang tertampil pada Gambar 1.

II. METODOLOGI PENELITIAN

A. Studi Literatur

Pada tahap ini dilakukan studi literatur sebagai bahan referensi dan sumber teori yang berkaitan dan diperlukan dalam penyelesaian tugas akhir. Sumber berasal dari jurnal, *codes*, tugas akhir, buku, dan dokumen relevan lainnya.

Gambar 4. Reliability Block Diagram (RBD) kondisi subsidence 1 meter.

Gambar 5. Grafik keandalan sistem dan kedalaman subsidence.

B. Pengumpulan Data

Desain jacket merujuk pada ULA jacket paltform PHE ONWJ. Jacket leg diameter adalah sebesar 34 inches dengan empat plan bracing levels: (1) Jacket Plan Bracing Elev. (+) 12'-0" (Jacket Walkway Level). (2) Jacket Plan Bracing Elev. (-) 16'-0". (3) Jakcet Plan Bracing Elev. (-) 46'-0". (4) Jacket Plan Bracing Elev. (-) 74'-10" (Mudline Level). Data lingkungan disajikan dalam Tabel 1.

C. Pemodelan dan Validasi

Pemodelan dilakukan dengan bantuan software SACS 12.0

Tabel 7. Validasi Model						
Berat Struktur (kips) Data	Berat Struktur (kips) Model	Berat Struktur (kips) Koreksi (%)				
586.091	587.017	0.157				
Tabel 8. Unity Check Member						
Deskripsi	Jacket	Pile				
Member Kritis	201-303	104-204				
Location	Diagonal Bracing					
Properties	Ø16"x0.5"	Ø30"x1.0"				
Load Condition	5007	5001				
Unity Check						
Non-Subsidence	0.74	0.55				
Subsidence 1m	0.77	0.56				
Subsidence 2m	0.80	0.57				
Subsidence 3m	0.80	0.57				
Subsidence 4m	0.87	0.67				
Subsidence 5m	0.89	0.67				
Subsidence 5.2m	0.90	0.67				

Tabel 9.

1000

KSK Aran Pembebanan 180°						
80 Degree			Base Sh			
Kondisi	Load Step	Load Factor	Awal	Collapse	RSR	
Non- Subsidence	50	2.35	525.14	1226.11	2.33	
Subsidence 1m	45	2.14	520	1105.74	2.13	
Subsidence 2m	43	2.08	523.1	1081.34	2.07	
Subsidence 3m	61	2.59	521.87	1374.84	2.63	
Subsidence 4m	39	1.9	529.23	1045.59	1.98	
Subsidence 5m	58	2.49	518.81	1326.54	2.56	
Subsidence 5.2m	44	2.16	582.32	1284.57	2.21	

Tabel 10.							
RSR Set	RSR Setiap Arah Pembebanan Kondisi Non-Subsidence						
		Non-Sul	bsidence				
Arah	Load	Load	Base SI	hear (kips)	_		
Pembebanan (°)	Step	factor	Awal	Collapse	RSR		
0	65	2.72	492.64	1387.4	2.82		
30	67	2.69	478.32	1326.88	2.77		
60	82	4.64	228.31	598.25	2.62		
90	51	2.32	466.99	1097.98	2.35		
120	55	2.31	470.93	1168.16	2.48		
150	53	2.47	492.86	1220.67	2.48		
180	50	2.35	525.14	1226.11	2.33		
210	70	2.81	508.76	1444.3	2.84		
240	85	3.21	484.69	1554.08	3.21		
270	92	3.17	476.61	1514.53	3.18		
300	77	3.1	488.17	1463.66	2.99		
330	64	2.71	476.53	1297.81	2.72		

berdasarkan data yang dimiliki. Setelah struktur dimodelkan, selanjutnya dilakukan validasi model dengan sturktur sesungguhnya.

D. Analisis In-place

Analisis dilakukan guna memperoleh *unity check* (UC) member dan mengetahui kemampuan *platform* dalam menerima beban. Analisis dilakukan pada segala arah sehingga dapat diketahui arah manakah yang menyebabkan struktur mengalami kondisi paling kritis.

E. Analisis Pushover

Analisis dilakukan dengan meningkatkan beban

Tabel 4.						
RSR Setiap Arah Pembebanan Kondisi Subsidence 1 meter						
Subsidence 1 meter						
Arah	Load	Load	Base She	ear (kips)		
Pembebanan (°)	Step	factor	Awal	Collapse	RSR	
0	65	2.72	492.64	1387.4	2.82	
30	67	2.69	478.32	1326.88	2.77	
60	82	4.64	462.56	1384.4	2.99	
90	51	2.32	466.99	1097.98	2.35	
120	55	2.31	470.93	1168.16	2.48	
150	53	2.47	492.86	1220.67	2.48	
180	50	2.35	520	1105.72	2.13	
210	70	2.81	508.76	1444.3	2.84	
240	85	3.21	484.69	1554.08	3.21	
270	92	3.17	476.61	1514.53	3.18	
300	77	3.1	468.17	1463.66	3.13	
330	64	2.71	476.53	1297.81	2.72	

Tabel 5.							
RSR Setiap Arah Pembebanan Kondisi Subsidence 2 meter							
	Subsidence 2 meter						
Arah	Load	Load	Base She	ear (kips)			
Pembebanan (°)	Step	factor	Awal	Collapse	RSR		
0	65	2.72	496.43	1299.74	2.62		
30	67	2.69	483.31	1195.86	2.47		
60	82	4.64	467.31	1170.03	2.50		
90	51	2.32	471.06	1077.89	2.29		
120	55	2.31	473.71	1159.31	2.45		
150	53	2.47	495.29	1124.72	2.27		
180	50	2.35	523.1	1081.34	2.07		
210	70	2.81	513.29	1375.37	2.68		
240	85	3.21	490.7	1611.04	3.28		
270	92	3.17	482.48	1531.43	3.17		
300	77	3.1	472.31	1461.57	3.09		
330	64	2.71	479.21	1276.07	2.66		

Tabel 6.					
RSR Setiap Arah Pembebanan Kondisi Subsidence 3 me	ter				

Subsidence 3 meter						
Arah	Load	Load	Base She	ear (kips)	_	
Pembebanan (°)	Step	factor	Awal	Collapse	RSR	
0	65	2.72	495.02	1234.34	2.49	
30	67	2.69	480.9	1330.76	2.77	
60	82	4.64	464.46	1050.04	2.26	
90	51	2.32	469.46	1072.5	2.28	
120	55	2.31	471.18	1082.67	2.30	
150	53	2.47	492.97	1193.03	2.42	
180	50	2.35	521.87	1374.84	2.63	
210	70	2.81	510.69	1281.45	2.51	
240	85	3.21	487.71	1585.06	3.25	
270	92	3.17	480.16	1252.58	2.61	
300	77	3.1	469.64	1425.47	3.04	
330	64	2.71	476.41	1268.67	2.66	

lingkungan kondisi badai secara bertahap hingga struktur runtuh. Analisis bertujuan unutk memperoleh *Reserve Strength Ratio* (RSR) pada struktur dalam kondisi *nonsubsidence* dan *subsidence*.

F. Analisis Keandalan

Untuk melakukan analisis keandalan, terdapat moda kegagalan yang merupakan parameter dalam menentukan keberhasilan atau kegagalan. Persamaan Moda Kegagaan (MK) yang digunakan dalam tugas akhir ini adalah kombinasi beban aksial dan bending moment, menurut API RP 2A LRFD [7]. Persamaan Moda Kegagalan adalah sebagai berikut:

$$MK = 1 - \cos\left[\frac{\pi}{2} \left| \frac{P}{Pn} \right] + \frac{\sqrt{M_y^2 + M_z^2}}{M_p}$$
(1)

RSR Setiap Arah Pembebanan Kondisi <i>Subsidence</i> 4 meter						
		Subsidenc	e 4 meter			
Arah	Load	L oad	Base She	ear (kips)		
Pembebanan (°)	Step	factor	Awal	Collapse	RSR	
0	65	2.72	502.73	1178.8	2.34	
30	67	2.69	484.52	1321.79	2.73	
60	82	4.64	465.2	1056.89	2.27	
90	51	2.32	472.58	1029.33	2.18	
120	55	2.31	474.09	1026.39	2.16	
150	53	2.47	498.31	1177.91	2.36	
180	50	2.35	529.23	1045.59	1.98	
210	70	2.81	514.5	1019.76	1.98	
240	85	3.21	490.15	1229.66	2.51	
270	92	3.17	485.15	1222.75	2.52	
300	77	3.1	474.39	1195.96	2.52	
330	64	2.71	482.26	1115.12	2.31	

Tabal 14

Tabel 15. RSR Setiap Arah Pembebanan Kondisi *Subsidence* 5 meter

Subsidence 5 meter						
Arah	Load	L oad	Base She	ear (kips)		
Pembebanan (°)	Step	factor	Awal	Collapse	RSR	
0	65	2.72	494.2	1160.31	2.35	
30	67	2.69	480.87	1266.91	2.63	
60	82	4.64	466.98	1024.2	2.19	
90	51	2.32	471.07	1011.8	2.15	
120	55	2.31	474.12	971.72	2.05	
150	53	2.47	492.33	1250.19	2.54	
180	50	2.35	518.81	1326.54	2.56	
210	70	2.81	508.82	1395.87	2.74	
240	85	3.21	491.11	1368.38	2.79	
270	92	3.17	495.93	1268.12	2.56	
300	77	3.1	477.71	1337.12	2.80	
330	64	2.71	477.96	1217.34	2.55	

Dimana, P (kips) merupakan *axial load* pada elemen member, Pn (kips) merupakan *ultimate axial capacity*, My (kips.in) merupakan *bending moment* pada elemen member arah sumbu-y, Mz (kips.in) adalah *bending moment* pada elemen member arah sumbu-z, dan Mp (kips.in) merupakan *plastic bending moment* pada elemen member.

Analisis keandalan dilakukan dengan menghitung *probability of failure* member menggunakan simulasi Monte Carlo dengan bantuan *Random Number Generator* (RNG). Kemudian, keandalan sistem dihitung menggunakan *Reliability Block Diagram* (RBD) yang selanjutnya digunakan dalam analisis risiko.

G. Analisis Risiko

Membuat matriks risiko berdasarkan *probability of failure* dan konsekuensi. Matriks risiko yang digunakan mengacu pada DNV RP G-101. Kategori *probability of failure* disajikan pada Tabel 2 dan kategori *consequence of failure* dapat dilihat pada Tabel 3.

III. ANALISIS DAN PEMBAHASAN

A. Pemodelan dan Validasi

Setelah struktur dimodelkan seperti yang tertampil pada Gambar 2, langkah selanjutnya adalah melakukan validasi model. Validasi dilakukan dengan cara membandingkan berat struktur sesungguhnya dengan berat model.

Berdasarkan Tabel 4, koreksi yang didapatkan sebesar 0.16% yang mana tidak melebihi 5%, maka model dapat dinyatakan valid dan mampu mewakili struktur sesungguhnya.

Tabel 11. RSR Setiap Arah Pembebanan Kondisi <i>Subsidence</i> 5.2 meter						
· · · · · · · · · · · · · · · · · · ·	S	Subsidence	2 5.2 meter			
Arah	Load	Load	Base She	ear (kips)		
Pembebanan	Sten	factor	Awal	Collanse	RSR	
(°)	Step	factor	Awai	conapse		
0	65	2.72	564.31	1043.48	1.85	
30	67	2.69	526.89	1111.5	2.11	
60	82	4.64	491.92	1066.8	2.17	
90	51	2.32	500.01	970.93	1.94	
120	55	2.31	501.1	951.88	1.90	
150	53	2.47	536.44	1225.16	2.28	
180	50	2.35	582.44	1284.57	2.21	
210	70	2.81	551.9	1091.39	1.98	
240	85	3.21	518.32	1490.81	2.86	
270	92	3.17	513.43	1472.46	2.78	
300	77	3.1	498.19	1273.35	2.56	
330	64	2.71	522.5	1192.98	2.28	
	RSR S	Tabe Setiap Kor	1 12. Idisi <i>Subsic</i>	lence		
Kondisi		RSR		Arah Kriti	s (°)	
Non-Subsiden	се	2.33		180		
Subsidence 1n	п	2.13	180			
Subsidence 2n	п	2.07	180			
Subsidence 3n	п	2.26	60			
Subsidence 4n	п	1.98		180		
Subsidence 5n	n	2.05		120		
Subsidence 5.	2 <i>m</i>	1.85		0		
Tabel 13. Keandalan Member Kondisi <i>Non-Subsidence</i>						
		Non-Sul	osidence			
Increment	Men	nber	PoF	7	K	
40	301	6-3024	0.24	41	0.759	
41	100	8-2126	0.18	32	0.818	
49	301	6-3017	0.26	5	0.74	

B. Analisis In-place

Analisis dilakukan dengan memberikan variasi kedalaman subsidence pada kondisi badai. Dari analisis *in-place* yang dilakukan, akan diperoleh *member stress check* sehingga dapat diketahui member kritis padas struktur. Member dinyatakan aman apabila $UC \leq 1$, *unity check* merupakan rasio antara tegangan aktual dengan tegangan izin.

Pada tugas akhir ini, *u nity check of member* dikelompokan menjadi dua macam, yakni *jacket* dan *pile*. *Unity check* member dan *pile* kondisi badai disajikan pada Tabel 5.

Berdasarkan Gambar 3, dapat dilihat bahwa kedalaman subsidence memberikan pengaruh terhadap unity check of member. UC jack et mengalami kenaikan hingga mencapai 0.90 akibat arah pembebanan 180°, sedangkan UC *pile* mengalami kenaikan hingga 0.67 akibat arah pembebanan 0°.

C. Analis is Pushover

Analisis *pushover* dilakukan guna memperoleh *Reserve Strength Ratio* (RSR). Analisis dilakukan berdasarkan arah pembebanan pada analisis *in-place* yang menyebabkan struktur mengalami kondisi paling kritis yakni pada 180°. Untuk merepresentasikan gaya yang terjadi pada analisis *pushover*, *output* yang digunakan adalah *base shear*. *Base shear* merupakan gaya reaksi maksimum yang bekerja di permukaan tanah akibat beban lateral. *Base shear* ini akan dijadikan parameter dalam perhitungan RSR yang ditunjukkan pada Tabel 6.

Semakin besar kedalaman subsidence, RSR yang dihasilkan semakin kecil. Sedangkan pada Tabel 6 dapat

	Tabel	20.						
Kean	dalan Member Kond	isi Subsidence	1 meter					
	Subsidence	1 meter						
Increment	Member	PoF	Κ					
	3006-3060	0.504	0.496					
40	1008-2126	0.401	0.599					
	1007-2168	0.903	0.097					
	1004-2170	0.336	0.664					
44	201-303	0.967	0.033					
45	3016-3017	0.911	0.089					
43	3018-3019	0.457	0.543					
	Tabel	21						
Kean	dalan Member Kond	21. isi Subsidence 2	2 meter					
	Subsidence	2 meter						
Increment	Member	PoF	K					
25	3016-3017	0.836	0.164					
35	3018-3019	0.468	0.532					
10	1004-2170	0.915	0.085					
40	1008-2126	0.527	0.473					
43	201-303	0.437	0.563					
	Tabel 22.							
Keandalan Member Kondisi Subsidence 3 meter								
	Subsidence	3 meter						
Increment	Member	PoF	K					
25	3016-3024	0.866	0.134					
33	3018-3019	0.192	0.808					
43	205-301	0.829	0.171					
17	3016-3017	0.912	0.088					
47	1007-2168	0.967	0.033					
	T-1-1	22						
Kean	dalan Member Kond	23. isi Subsidanca	1 meter					
Kean	Subsidence 4 meter							
Increment	Member	PoF	K					
	401-471	0.836	0.164					
35	101 171	0.050	0.101					

merement	memoer	101	11	
25	401-471	0.836	0.164	
55	424-439	0.511	0.489	
	438-403	0.798	0.202	
37	3016-3017	0.887	0.113	
	3018-3019	0.959	0.041	
				_

dilihat bahwa terjadi inkonsistensi pada RSR ditandai dengan meningkatnya RSR pada kondisi kedalaman *subsidence* 3 meter. Hal ini dikarenakan *deck* paling bawah dari struktur sudah terkena beban gelombang, maka terjadi perubahan distriusi gaya pada kedalaman *subsidence* 3 meter.

Oleh karena itu, perlu dilakukan analisis *pushover* untuk setiap arah pembebanan pada kondisi *non-subsidence* dan *subsidence*. Hal ini bertujuan untuk mengetahui arah pembebanan manakah yang memberikan hasil RSR yang konsisten sesuai asumsi bahwa RSR semakin menurun seiring dengan bertambahnya kedalaman *subsidence* serta untuk mengetahui arah manakah yang paling cepat menyebabkan struktur runtuh (kritis). RSR sebagai *output* dari analisis ini disajikan pada Tabel 7.

Tabel 7 menunjukkan RSR terkecil terjadi pada arah pembebanan 180° yakni sebesar 2.33482. Maka, untuk kondisi *non-subsidence* arah kritis berada pada arah pembebanan 180°.

Tabel 8 menunjukkan RSR terkecil terjadi pada arah pembebanan 180° yakni sebesar 2.12638. Maka, untuk kondisi *subsidence* 1 meter arah kritis masih berada pada arah pembebanan 180°.

Tabel 9 menunjukkan RSR terkecil terjadi pada arah pembebanan 180° yakni sebesar 2.06718. Maka, untuk kondisi *subsidence* 2 meter arah kritis juga masih berada pada arah pembebanan 180°.

Tabel 10 menunjukkan RSR t erkecil terjadi pada arah

Tabel 16.								
Keandalan Member Kondisi Subsidence 5 meter								
Subsidence 5 meter								
Increment	<u>Member</u>		P0F	<u> </u>	5			
38		0.85	0.1	5 26				
20	2038-3054		0.804	0.1	30 55			
39		0.945	0.0	55 62				
	3018-3019		0.337	0.4	05			
	Та	bal 17						
Tabel 17. Keandalan Member Kondisi <i>Subsidence</i> 5.2 meter								
	Subsider	nce 5.2 1	neter					
Increment	Member		PoF	K				
27	1004-2170		0.931	0.0	69			
31	394-395		0.926	0.0	74			
32	3016-3017		0.506	0.4	94			
	Ta	bel 18.						
	Keanda	alan Sist	tem					
Kondisi		PoFs		Ks				
Non Subsidance		0.011		0.989				
Subsidence Im		0.025		0.975				
Subsidence	2m	0.082		0.918				
Subsidence	3m	0.122		0.878				
Subsidence	4m	0.290		0.710				
Subsidence 5m		0.373		0.627				
Subsidence 5.2m		0.436		0.564				
	Ta	bel 19.						
Matriks Risiko Kategori Konsekuensi Safety								
PoF	А	В	С	D	Е			
Ranking		2		2				
5	Subsidence 3, 4, 5	,						
	dan 5.2 meter							
4	Non-Subsidence,							
	Subsidence 1, dar	ı						
2	∠ meter							
3								
∠ 1								
1 Safate	٨	D	C	D	F			
sajery	А	В	<u> </u>	U	E			

pembebanan 60° yakni sebesar 2.26078. Maka, untuk kondisi *subsidence* 3 meter arah kritis berubah berada pada arah pembebanan 60°. Hal ini dikarenakan pada kedalaman *subsidence* 3 meter, *deck* paling bawah sudah terkena beban gelombang sehingga terjadi perubahan distribusi gaya.

Tabel 11 menunjukkan RSR terkecil terjadi pada arah pembebanan 180° yakni sebesar 1.97568. Maka, untuk kondisi *subsidence* 4 meter arah kritis kembali berada pada arah pembebanan 180°.

Tabel 12 menunjukkan RSR terkecil terjadi pada arah pembebanan 120° yakni sebesar 2.04952. Maka, untuk kondisi *subsidence* 5 meter arah kritis berubah berada pada arah pembebanan 120°.

Tabel 13 menunjukkan RSR terkecil terjadi pada arah pembebanan 0° yakni sebesar 1.84913. Maka, untuk kondisi *subsidence* 5.2 meter arah kritis berubah berada pada arah pembebanan 0°. Tabel 14 menunjukkan RSR minimum untuk masing-masing kedalaman subsidence.

D. Analisis Keandalan

Moda kegagalan yang digunakan mengacu pada API LRFD yang merupakan kombinasi dari *axial load* dan *bending moment* yang dapat dilihat pada persamaan 1. Member dinyatakan gagal apabila MK < 0 dan dinyatakan sukses apabila 0 < MK < 1. *Probability of failure* dihitung dengan menggunakan simulasi Monte Carlo. Analisis dilakukan pada arah pembebanan yang menyebabkan struktur

Tabel 25. Matriks Risiko Kategori Konsekuensi <i>Environment</i>					
PoF Ranking	А	В	С	D	Ε
5					Subsidence 3, 4, 5, dan 5.2 meter
4					Non- Subsidence, Subsidence 1, dan 2 meter
3					aan 2 meter
2					
1					
Environment	Α	В	С	D	E

paling cepat mengalami keruntuhan (kritis) untuk masingmasing kondisi kedalaman *subsidence*. Analisis dilakukan sebanyak 1000 kali untuk masing-masing member plastis pada tiap kondisi kedalaman *su bsidence* (Tabel 15, Tabel 16, dan Tabel 17).

Setelah diketahui keandalan member pada struktur, selanjutnya dilakukan perhitungan keandalan system dengan menggunakan *Reliability Block Diagram* (RBD). Rangkaian seri digunakan pada member yang mengalami kegagalan pada *increment load* sama dan *joint* yang saling berhubungan antar member. Sedangkan rangkaian paralel digunakan untuk member dengan *increment load* sama tetapi tidak terdapat *joint* berhubungan antar member dan digunakan pula pada member dengan *increment load* berbeda (Tabel 18, Tabel 19, dan Tabel 20).

Sebagai contoh perhitungan RBD digunakan pada kondisi *subsidence* 1 meter, contoh rangkaian diagram dapat dilihat pada Gambar 4.

1) Keandalan Sistem

 $K_{s} = 1 - [(1 - K_{3006-3060})(1 - K_{1008-2126})(1 - K_{1007-2168})(1 - K_{1004-2170}) x (1 - K_{201-303}) x (1 - K_{3016-3017})(1 - K_{3018-3019})]$

 $K_s = 1 - [(1 - 0.496)(1 - 0.599)(1 - 0.097)(1 - 664)x(1 - 0.033)x(1 - 089)(1 - 543)]$

 $K_s = 1 - [(0.504)(0.401)(0.903)(0.336)x(0.967)x(0.911)(0.457)]$

 $K_{\rm s} = 1 - 0.0247$

 $K_s = 0.9753$

2) Peluang Kegagalan Sistem

 $PoF_s = 1 - K_s$

 $PoF_s = 1 - 0.9753$

$$PoF_{s} = 0.0247$$

Setelah dilakukan analisis keandalan system menggunakan Reliability Block Diagram (RBD), maka diperoleh probability of failure sistem dan keandalan sistem pada masing-masing kondisi kedalaman subsidence pada Tabel 22.

Peluang kegagalan sistem mengalami peningkatan seiring dengan bertambahnya kedalaman *subsidence* sesuai yang tersaji pada Tabel 22. Gambar 5 juga menunjukkan bahwa

Tabel 24. Matriks Risiko Kategori Konsekuensi *Business*

PoF Ranking	А	В	С	D	Е
5				Subsidence 3, 4, 5, dan 5.2 meter	
4				Non-Subsidence, Subsidence 1. dan	
				2 meter	
3					
2					
1					
Business	А	В	С	D	Е

keandalan sistem mengalami penurunan seiring bertambahnya kedalaman *subsidence* (Tabel 21).

E. Analisis Risiko

Struktur yang dianalisis dalam tugas akhir ini adalah ULA *Platform* yang merupakan *wellhead tripod platform* memiliki fungsi eksploitasi untuk produksi minyak bumi. *Wellhead platform* tidak dihuni manusia (*unmanned*) sehingga tidak menimbulkan korban manusia. Meskipun demikian, konsekuensi atas keruntuhan struktur akan berdampak pada proses produksi yang terganggu dan memungkinkan mengalami penghentian. Hal tersebut akan menyebabkan kerugian yang cukup signifikan dari segi produksi, waktu, biaya, hingga lingkungan sekitar.

Keruntuhan struktur dapat menyebabkan bocornya pipa yang menyalurkan minyak dari well (sumur) ke tempat proses produksi dan penyimpanan. Hal ini akan berdampak pada lingkungan sekitar, polusi yang dapat mencemari ekosistem dan biota laut. Gas hasil produksi memiliki kandungan CH₄ sebesar 76.32% moles dan CO₂ sebesar 2.77% moles. Berdasarkan data tersebut, ULA Platform termasuk dalam kategori pollution apabila struktur mengalami kegagalan. Gas methane (CH₄) memiliki emisi gas rumah kaca 23 kali lebih ganas dibanding kanbondioksida (CO₂) hal ini memberikan dampak buruk bagi lingkungan. Secara tidak langsung, gas methane merupakan contributor utama penyebab pemanasan global yang berkaibat pada perubahan iklim (climate change). Oleh karena itu, pencemaran laut oleh gas methane ini dapat menyebabkan pemanasan global yang parah sehingga memungkinkan berakibat pada kematian sebagian besar makhluk hidup yang ada di laut ataupun darat. Dampak finansial yang ditimbulkan juga besar karena pencemaran ini.

ULA *Platform* memproduksi minyak sebesar ± 2200 BOPD oil dan ± 10 MMSCFD gas dengan tekanan operasi 1600 psig, temperatur hasil produksi 120°F. Dengan hasil produksi ini d isetiap harinya, risiko yang ditimbulkan akibat keruntuhan struktur akan berpengaruh cukup besar dari segi ekonomi. Seperti yang kita ketahui, industri minyak saat ini masih dalam fase pemulihan sejak dua tahun terakhir dimana investasi turun karena jatuhnya harga minyak dunia hingga di bawah US\$ 30 per barel. Kebutuhan minyak dunia mencapai 100.4 juta bareldi tahun 2023 dengan harga US\$ 83.97 per barel, turun US\$ 1.37 atau 1.61%. Dengan demikian, apabila ULA *Platform* yang memproduksi minyak sebesar ± 2200 BOPD mengalami keruntuhan, kerugian mencapai $\pm US$ \$ 184.734 atau setara dengan $\pm €176,365.55$.

Berdasarkan analisis konsekuensi di atas, konsekuensi safety struktur termasuk dalam kategori CoF ranking A, konsekuensi environment termasuk kategori CoF ranking E, dan konsekuensi business termasuk kategori CoF ranking D. *Probabilty of failure* kondisi *subsidence* 5.2 meter sebesar 0.436, untuk kondisi *subsidence* 5 meter adalah 0.373, kemudian untuk kondisi *subsidence* 4 meter *probability of failure* sebesar 0.290, dan untuk *subsidence* 3 meter sebesar 0.122 ke-empat kondisi tersebut termasuk kategori PoF ranking 5. Selanjutnya, untuk kondisi *subsidence* 2 meter *probability of failure* sebesar 0.082, untuk *subsidence* 1 meter sebesar 0.025, dan untuk kondisi *non-subsidence* didapatkan *probability of failure* sebesar 0.011, maka ke-tiga kondisi ini termsuk PoF *ranking* 4. Selanjutnya, masing-masing kondisi dimasukkan ke matriks risiko DNV RP G-101 sehingga diperoleh matriks risiko seperti yang tersaji pada Tabel 23, Tabel 24, dan Tabel 25.

IV. KESIMPULAN

Dari analisis dan pembahasan yang telah dilakukan, didapat beberapa kesimpulan diantaranya: (1) Hasil dari analisis in-place kondisi badai, diperoleh kedalaman maksimum subsidence yang diizinkan agar sttuktur masih layak beroperasi sesuai codes adalah 5.2 meter. (2) Hasil analisis pushover diperoleh RSR tidak konsisten menurun seiring dengan bertambahnya kedalaman subsidence. Hasil RSR terkecil struktur pada masing-masing kedalaman adalah sebagai berikut, kondisi non-subsidence RSR sebesar 2.33, subsidence 1 meter sebesar 2.13, subsidence 2 meter sebesar 2.07 dengan arah kritis pada arah pembebanan 180°, kemudian subsidence 3 meter sebesar 2.26 arah kritis berubah pada arah pembebanan 60° akibat *deck* paling bawah telah terkenan beban gelombang, lalu subsidence 4 meter RSR sebesar 1.98 arah kritis kembali berada pada arah pembebanan 180°, selanjutnya subsidence 5 meter RSR sebesar 2.05 arah kritis berubah pada arah pembebanan 120°, dan subsidence 5.2 meter RSR sebesar 1.85 dengan arah kritis pada arah pembebanan 0°. (3) Hasil perhitungan keandalan sistem menunjukkan bahwa keandalan struktur mengalami penurunan, pada kondidi *non-subsidence* keandalan sebesar 0.989, *subsidence* 1 meter keandalan menjadi 0.975, *subsidence* 2 meter keandalan menjadi 0.918, *subsidence* 3 meter keandalan menjadi 0.878, *subsidence* 4 meter keandalan menjadi 0.627, dan *subsidence* 5 meter keandalan menjadi 0.564. (4) Berdasarkan matriks risiko, untuk konsekuensi *safety* baik kondisi *non-subsidence* maupun kondisi *subsidence* keduanya berada di area kuning. Untuk konsekuensi *environment* dan *business* kondisi *non-subsidence* dan *subsidence* keduanya berada di area merah.

DAFTAR PUSTAKA

- [1] S. Chakrabarti, *Handbook of Offshore Engineering: Offshore Structure Analysis*, 2nd ed. United States of America: Elsevier Ltd, 2005.
- [2] API, Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms-Working Stress Design, 21st ed. Washington, D.C.: American Petroleum Institute, 2014.
- [3] B. S. W. Sari, "Analisis Kekuatan Ultimate Berbasis Risiko pada Struktur Jacket Wellhead Tripod Platform Akibat Terjadinya Scouring," Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember, 2015.
- [4] S. Ainnilah, "Analisis Ultimate Strength Struktur Jacket Platform Berbasis Keandalan Pasca Subsidence," Departemen Teknik Kelautan, Institut Teknologi Sepuluh Nopember, 2017.
- [5] M. Mark, B. Etterdal, and H. Grigorian, "Structural Reliability Assessment of Ekofisk Jackets Under Extreme Loading," in *Offshore Technology Conference*, 2001. doi: 10.4043/13190-MS.
- [6] P. Broughton, S. Komaromy, M. Lefranc, B. Rognlien, and R. Hayes, "The Effects of Subsidence on The Steel Jacket and Piled Foundation Designs for The Ekofisk 2/4X And 2/4J Platforms," *Proc. Inst. Civ. Eng. Marit. Energy*, vol. 118, no. 2, pp. 88–102, 1996, doi: 10.1680/iwtme.1996.28430.
- [7] API, Planning, Designing, and Constructing Fixed Offshore Platforms-Load and Resistance Factor Design, 2nd ed. United States of America: American Petroleum Institute, 2019.