# 10.000 DWT Coal Vessel/Barge Open Pier Jetty Planning at Molotabu, Gorontalo

Farel Aimar Zain, Fuddoly, dan Cahya Buana Civil Engineering Department, Institut Teknologi Sepuluh Nopember (ITS) *e-mail*: fuddoly@ce.its.ac.id

Abstract—Coal exports and imports are common in Indonesia, especially Gorontalo, North Sulawesi, which is always involved in coal export and import activities. Coal is one of the important energy sources in this country. These activities always involve ships. A ship certainly needs a station like any other form of transportation. Open pier construction has various regulations so that vessel can dock safely. Various things can affect the dimension and even the strength of the port structure. From the planning of the pier, implementation methods are also carried out to calculate the planned cost budget The results of planning an open pier jetty for a 10,000 DWT barge include a minimum depth recommendation of -6.5 mLWS. Recommended jetty dimensions are 108 m long and 20 m wide at an elevation of +2.5 mLWS. From the results of the upper structure calculations, a plate with a thickness of 35 cm was obtained. Then for the beam requirements for the jetty structure (500 x 750 mm) and fender beams (2600 x 2500 x 1200 mm). For single pile cap required  $(2000\ x\ 2000\ x\ 1000\ mm)$  and batter pile cap  $(3000\ x\ 2000\ x\ 1000$ mm). From the results of the substructure calculations, it was found that D609 mm steel piles with a thickness of 12 mm were needed for the jetty structure. Dredged volume requirement is 20,300 m3. Breast wall dimensions (400 x 2000 mm), cantilever dimensions (150 x 250 mm), foot dimensions (2500 x 400 mm), and stiffener thickness of 30 cm. From the overall calculation results, the implementation method can be planned as follows. Preparatory work, dredging work, retaining wall work, jetty structure work, and fender and bollard installation work. From this work, the total cost required is Rp. 51.324.256.809.

Keywords-Cost Estimating, Dredging, Jetty, Open Pier, **Retaining Wall.** 

# I. INTRODUCTION

**♦**OAL is Indonesia's most vital mining commodity. One form of utilization of coal is as a source of energy for power generation. Indonesia itself is one of the largest thermal coal producers and exporters in the world. Based on the Ministry of Energy and Mineral Resources website, Indonesia has coal resources of 143.7 billion tons. The availability of such large natural resources of coal can provide its own advantages, especially if the raw minerals are processed domestically. Therefore, the presence of coal is still very much needed in Indonesia, considering that this fossil fuel provides many benefits for humans.

To support the potential of Gorontalo and its surroundings which have many advantages because it is close to the Philippines and international traffic (sea transportation) is quite busy. Besides, the potential in the fields of industry and trade is racing against each other in the economic development of the Manado-Bitung Integrated Economic Development Zone (KAPET). However, these developments must be accompanied by the availability of adequate electricity.

In order to fulfill as well as to support the rapid development of the waters in Gorontalo and its surroundings,



Location of project

for 10.000 DWT coal barges at Molotabu, Gorontalo, as operational fuel for the Power Plant must be carried out and the design based on [1-13].

#### II. RESEARCH METHOD

#### A. Location of Research

The location of this jetty planning is in the North of Sulawesi, Molotabu, Gorontalo, with the detail of location can be seen on Figure 1.

#### B. Flow Chart

Flow chart of this planning can be seen on Figure 2.

C. Collecting and Data Analysis

Collected data analyzed based on [1].

# 1) Tides Data

Phenomenon of periodic ups and downs of sea levels caused by a combination of gravity and the attractive force of astronomical objects, especially the sun and the moon on the earth. The tides data result can be seen on Table 1.

#### 2) Bathymetry Data

Bathymetric maps are maps that show contours seabed depth from the position of 0.00 mLWS. Bathymetry map at Molotabu, Gorontalo, can be seen on Figure 3.

From the results of observing currents around the location, the maximum current speed is 0,5 m/s



Figure 2. Flowchart.



Figure 3. Bathymetry map.

# 3) Wind Data

Wind data can be seen on Table 2

# 4) Wave Data

Wave data obtained with several steps. Firstly, forecasting based on wind data and fetch effective, and the outcome is wave height each wind direction. Second, analysis with Weibull and Gumbel method in order to find wave height in 2, 5, 10, to 100 years return period. Last, from each data, we took the most critical value and R value close to 1, and then analyze with refraction considerations due to seabed elevation difference to gain wave height on the face of the jetty. Based wave analysis, the wave height taken is +1,76 mLWS.

# 5) Soil Data

Soil data used for this project based on 2 points of bore log. Named BL-1 and BL-2. SNI 1726:2020 is used for determining the classification of the soil. Soil data can be seen





Figure 5. 10.000 DWT coal barge.





2.75 m



# on Figure 4.

# 6) Vessel Data

The specification of the vessel is shown below:

- a. Dead Weight Tonnage (DWT) = 10000 MT
- b. Length of Overall (LOA) = 96,56 m
- c. Breadth (Width) = 27,43 m
- d. Draft = 4,88 m
- e. Depth = 6,1 m

The designed vessel can be seen on Figure 5.

# 7) Unloading Equipment

The equipment used for unloading purposes is truck. The specification and dimension of the truck is based on SNI



|      | /    | ,              | ,              | ,      |  |  |  |  |
|------|------|----------------|----------------|--------|--|--|--|--|
| 2008 | 4,62 | 6,78           | 4,34           | 3,33   |  |  |  |  |
| 2009 | 4,50 | 7,52           | 4,77           | 3,55   |  |  |  |  |
| 2010 | 5,53 | 5,18           | 3,63           | 4,07   |  |  |  |  |
| 2011 | 4,70 | 6,91           | 3,96           | 4,18   |  |  |  |  |
| 2012 | 4,80 | 6,74           | 4,42           | 3,47   |  |  |  |  |
| Max  | 5,53 | 7,90           | 5,33           | 5,04   |  |  |  |  |
|      |      |                |                |        |  |  |  |  |
|      |      | Tabl           | le 3.          |        |  |  |  |  |
|      | ]    | Moment of Slab | Recapitulation |        |  |  |  |  |
| Туре |      | Position       | Moment         | (kg.m) |  |  |  |  |
|      |      | Mlx            | 10983,9        | 8      |  |  |  |  |
| A 1  |      | Mtx            | -11327,7       |        |  |  |  |  |
| AI   |      | Mly            | 13823,51       |        |  |  |  |  |
|      |      | Mty            | -17049,97      |        |  |  |  |  |
|      |      | Mlx            | 780,48         |        |  |  |  |  |
| 12   |      | Mtx            | -780,48        |        |  |  |  |  |
| AL   |      | Mly            | 780,48         |        |  |  |  |  |
|      |      | Mty            | -780,48        |        |  |  |  |  |
|      |      | Mlx            | 1860,31        |        |  |  |  |  |
| 12   |      | Mtx            | -2419,82       |        |  |  |  |  |
| A3   |      | Mly            | 760,8          |        |  |  |  |  |
|      |      | Mty            | -6398,38       | 3      |  |  |  |  |

Table 1. Tides Elevation

Symbol

HWS

MSL.

LWS

Southeast

7,07

6,92

6,42

6.54

7,72

7.33

Table 2. Wind Velocity at Molotabu, Gorontalo Recapitulation

Wind Velocity (m/s)

South

4,86

4,47

4,55

4.46

4,59

4.56

Figure 9. Jetty model in SAP2000.

1725:2015. The dimension and loads each axle can be seen on Figure 6.

#### **III. RESULTS AND DISCUSSION**

#### A. Layout Evaluation

Layout evaluations is needed for vessel can berth safely. Water layout determined, while land layout determined based on [2], [8-9].

#### 1) Water Layout

The result of water layout including; entrance channel, turning basin, berth basin, and anchorage area can be seen on Figure 7.

#### 2) Land Layout

After analyzed data, the jetty dimension is  $108 \times 20$  m. The retaining wall needed is along the jetty's length. And for dredging, the area is  $20.300 \text{ m}^3$ . The selection of heavy equipment for dredging, suction cutter is the selected heavy equipment based on seabed and volume of dredging. Figure 8 is the illustration of the selected heavy equipment for dredging. The result of land layout including; the dimension of jetty, elevation of jetty, dredging volume, can be seen on Figure 8.

#### 3) Structure Planning

Water Level Condition

West

3,66

4,84

5.26

3.97

4,55

4.60

High Water Springs

Low Water Springs

Mean Sea Level

Year

2002

2003

2004

2005

2006

2007

Structure planning designed based on [3], [5], [7-13]. For reinforcement calculation, analyzed based on [8]. Structure planning including; structure modelling, slab planning, beam planning, pile cap planning, and foundation planning. The control that must be considered is the control of the crack width. To control crack width, Equation 1 below is used.

$$W = \alpha \left( C_3 x d + C_4 \frac{dp}{\omega p} \right) \left( \sigma_a - \frac{C_5}{\omega p} \right) 10^{-6}$$

#### 4) Structure Modelling

Structure planning is started from modelling assisted by SAP2000 and the model can be seen on Figure 9.

# 5) Slab Planning

There are 3 different dimensions of slab that analyzed. The Table 3 is the moment recapitulation of each slab. Slab planning results such as reinforcement and crack control can be seen on Table 4.

#### 6) Beam Planning

In this project, there are 2 type of beam. The difference is only on the beam's span, 8 m span and 2 m span. Table 5 is the recapitulation of beam's moment. Beam planning results

Elevation (mLWS)

Southwest

3,91

4,09

3,53

4.11

3,97

4.69

+1,343

+0,671

0.00

|             |                   |              |             | Flex         | ural R   | einfo           | rcem         | nent and | d Cr             | ack (                           | r.<br>Contr  | ol in S  | lab Re  | ecapi  | tulatio | on     |        |        |           |       |          |                    |
|-------------|-------------------|--------------|-------------|--------------|----------|-----------------|--------------|----------|------------------|---------------------------------|--------------|----------|---------|--------|---------|--------|--------|--------|-----------|-------|----------|--------------------|
| Type        | Lengtl            | n Width      | Thick       | kness        |          |                 |              |          |                  |                                 | Fle          | kural F  | Reinfor | rcem   | ent     |        |        |        |           |       | - Cray   | ok Control         |
| Type        | (mm)              | (mm)         | (mm)        | )            | Sup      | port X          | ζ            |          | Su               | pport                           | Y            |          | Fie     | eld X  |         |        | Fie    | ld Y   |           |       | Cla      | K COIIIIOI         |
| A1          | 8000              | 8000         | 350         |              | D        | 22              | -            | 125      | D                | 22                              | -            | 90       | D       | 22     | -       | 125    | D      | 22     | -         | 100   | OK       |                    |
| A2          | 2000              | 2000         | 350         |              | D        | 16<br>16        | -            | 125      | D                | 16                              | -            | 125      |         | 16     | -       | 200    |        | 16     | -         | 200   | OK       |                    |
| AS          | 2000              | 2000         | 330         |              | D        | 10              | -            | 200      | D                | 10                              | -            | 123      | D       | 10     | -       | 200    |        | 10     | -         | 200   | UK       |                    |
|             |                   |              |             |              |          |                 | Mo           | ment of  | Ta<br>f Be       | able 5<br>am R                  | i.<br>lecap  | itulatio | on      |        |         |        |        |        |           |       |          |                    |
| Туре        |                   |              |             |              |          | Fo              | orce         |          |                  |                                 |              | I        | Mome    | nt (kl | N.m)    |        |        |        |           |       |          |                    |
| B1          |                   |              |             |              |          | M               | ltum         |          |                  |                                 |              | -        | 557,69  | 9      |         |        |        |        |           |       |          |                    |
|             |                   |              |             |              |          | M               | llap<br>[tum |          |                  |                                 |              | -        | 399.4   |        |         |        |        |        |           |       |          |                    |
| B2          |                   |              |             |              |          | M               | llap         |          |                  |                                 |              | 3        | 38,03   |        |         |        |        |        |           |       |          |                    |
| Diania E    | · · · · · ·       |              |             |              |          | Μ               | ltum         |          |                  |                                 |              | -        | 1826,8  | 8      |         |        |        |        |           |       |          |                    |
| Plank F     | ender             |              |             |              |          | Μ               | llap         |          |                  |                                 |              | 1        | 826,8   |        |         |        |        |        |           |       |          |                    |
|             |                   |              |             |              |          |                 |              |          |                  |                                 |              |          |         |        |         |        |        |        |           |       |          |                    |
|             |                   |              |             |              | <i>c</i> |                 |              |          | Ta               | able 6                          | <b>5</b> .   |          |         |        |         |        |        |        |           |       |          |                    |
|             |                   |              |             | Rein         | forcer   | nent I          | Need         | ed and   | Cra              | $\frac{\operatorname{ck} C}{c}$ | ontro        | ol in Be | eam R   | ecapi  | tulati  | on     | D      |        |           |       |          |                    |
| Type        |                   | Length       | Height      | Width        | C        | +               | Fl           | exural   | Ren              | nforce<br>E:-1                  | emen         | it       |         | C.     |         | Sh     | ear Re | inforc | eme       | nt    |          | Crack              |
| D1          |                   | (mm)<br>8000 | (mm)<br>500 | (mm)<br>750  | <br>     | port            | D            | 40       |                  | Field                           | 1            | D        | 40      | SL     | 12      | l .    | 200    | Fl     | 12        |       | 200      | OK                 |
| B1<br>B2    |                   | 2000         | 500         | 750          | 4        | -               | D            | 29       |                  | 2                               | 2            | D        | 29      | ø      | 13      | -      | 150    | ø      | 13        | -     | 150      | OK                 |
| Plank F     | ender             | 2000         | 200         | 150          | D        | 36              | -            | 100      | )                | Đ                               | 36           | -        | 100     | ø      | 13      | -      | 150    | ø      | 13        | -     | 150      | OK                 |
|             |                   |              |             |              |          | Ν               | Mom          | ent of   | Ta<br>Pile       | able 7<br>Cap                   | '.<br>Reca   | pitulat  | tion    |        |         |        |        |        |           |       |          |                    |
| Туре        |                   |              |             |              |          | Р               | ositi        | on       |                  |                                 |              |          |         | Mor    | nent    | (kg.m) | )      |        |           |       |          |                    |
| ~           |                   |              |             |              |          | N               | Лx           |          |                  |                                 |              |          |         | 2924   | 42.51   |        |        |        |           |       |          |                    |
| Single l    | Pile Cap          |              |             |              |          | Ν               | Лy           |          |                  |                                 |              |          |         | 579    | 97,49   |        |        |        |           |       |          |                    |
| Batter I    | Pile Can          |              |             |              |          | Ν               | Лx           |          |                  |                                 |              |          |         | 8793   | 32,76   |        |        |        |           |       |          |                    |
| Datter      | ne Cap            |              |             |              |          | N               | Лу           |          |                  |                                 |              |          |         | 914:   | 57,83   |        |        |        |           |       |          |                    |
|             |                   |              |             | Flexur       | al Rei   | nforc           | emei         | nt and ( | Ta<br>Tac        | able 8                          | 3.<br>Introl | in Pil   | e Can   | Reca   | nitula  | tion   |        |        |           |       |          |                    |
| Type        |                   | Length (mm)  | W           | idth (mm     | )        | Thi             | ckne         | ess (mn  | n)               |                                 | Flex         | ural R   | einfor  | ceme   | nt      |        |        |        |           | (     | Crack C  | ontrol             |
| 2 F -       | -                 | - <u>-</u> ) |             | (            | ,        |                 |              | (        | /                |                                 |              |          |         | 2      | K-Dir   | ection |        |        | Y         | -Dire | ction    |                    |
| Single      |                   | 2000         | 20          | 00           |          | 100             | 0            |          |                  |                                 | D            | 32       | -       | 20     | )       | D      | 32     | -      | 100       | ) (   | OK       |                    |
| Batter      |                   | 3000         | 20          | 00           |          | 100             | 0            |          |                  |                                 | D            | 40       | -       | 12:    | 5       | D      | 40     | -      | 140       | ) (   | OK       |                    |
|             |                   |              |             |              |          |                 |              | 1.5.     | Ta               | able 9                          | ).<br>D      | •, •     |         |        |         |        |        |        |           |       |          |                    |
|             |                   | _            |             |              |          | L               | Jesig        | gned Pi  | ie D             | eptn                            | кеса         | ipitula  | uon     |        |         |        |        | P      |           | G     | •.       |                    |
| Туре        |                   | Force        | D.''        | <i>(</i> , ) | Mo       | ment            |              |          | <i>.</i>         |                                 |              | Pile D   | epth (1 | n)     |         |        |        | B      | earin     | g Cap | acity    | 4.55               |
| Circ -1 - 1 |                   | Push (ton)   | Pull        | (ton)        | M        | $\frac{1}{500}$ | .m)          | My       | $\frac{1}{5.02}$ | n.m)                            |              |          | - `     | 17     |         |        |        | Pı     | ill (k    | N)    | Push     | (KN)               |
| Single I    | rile (PI)         | 10/,54       | -           | 12           | 2        | 3,08<br>4 99    |              | 2        | 3,92<br>2 14     | 2<br>5                          |              |          |         | 1/     | 8-2     |        |        |        | -<br>710/ | 14    | 49<br>25 | 23,18<br>21.57     |
| Single 1    | File (D7)         | 134,01       | 24,         | ,42          | 5        | 4,00<br>1 82    |              | 2        | ∠,40<br>5 2      | J                               |              |          |         | 11     | ασ      |        |        |        | /10,4     | +-+   | 30       | 01,07<br>01/13     |
| Single      | инс (Г <i>2</i> ) | 139,17       | -           |              | 5        | +,00            |              | 3        | 5,5              |                                 |              |          |         | 15     |         |        |        |        | -         |       | 40       | 71, <del>4</del> 3 |

Table 4

such as reinforcement and crack control can be seen on Table b. Mo 6.

# 7) Pile Cap Planning

2 types of pile cap is planned in this project, for single pile and batter pile. Because the unloading process using truck, there are eccentricity need to be considered. Table 7 is moment recapitulation on pile cap. Pile cap planning results such as reinforcement and crack control seen on Table 8.

# 8) Foundation Planning

There are several control need to be analyzed including; bearing capacity analyzis, depth of pile (Table 9), strength of pile control (Table 10), and reinforcement of pile (Table 11). Strength of pile control equation is shown as equation (2)-(8) below.

a. Deflection Control

c. Axial Control

$$F_e = \frac{\pi^2 E}{\left(\frac{KL}{r}\right)^2}$$

d. Axial - Moment Interaction Control

$$\frac{P_U}{P_n} + \frac{8}{9} \left( \frac{M_{ux}}{M_{cx}} + \frac{M_{uy}}{M_{cx}} \right) \le 1$$

e. Tension Control

$$\sigma < \sigma_{allow}$$

f. Shear Control

$$V_{\mu} < 0,75 V_{r}$$

g. The Ability of The Pile to Stand Alone

| Strength of Pile Control Recapitulation    |          |           |        |  |  |  |  |  |  |  |
|--------------------------------------------|----------|-----------|--------|--|--|--|--|--|--|--|
| Domork                                     |          | Jetty     |        |  |  |  |  |  |  |  |
| Remark                                     | Existing | Allowable | Status |  |  |  |  |  |  |  |
| Deflection Control (mm)                    | 14,9     | 25        | OK     |  |  |  |  |  |  |  |
| Moment Control (ton.m)                     | 25,92    | 86,13     | OK     |  |  |  |  |  |  |  |
| Axial-Moment Interaction Control (ton)     | 167,54   | 483,9     | OK     |  |  |  |  |  |  |  |
| Shear Control (ton)                        | 6,68     | 403,25    | OK     |  |  |  |  |  |  |  |
| Tension Control (Mpa)                      | 74,61    | 284       | OK     |  |  |  |  |  |  |  |
| The Ability of The Pile to Stand Alone (s) | 0,36     | 3,15      | OK     |  |  |  |  |  |  |  |

|        | Table 11.                                   |   |   |    |             |          |        |       |                        |             |            |                       |   |   |   |    |
|--------|---------------------------------------------|---|---|----|-------------|----------|--------|-------|------------------------|-------------|------------|-----------------------|---|---|---|----|
|        | Reinforcement Needed in Pile Recapitulation |   |   |    |             |          |        |       |                        |             |            |                       |   |   |   |    |
| Туре   | Distribution Reinforcement                  |   |   |    | Spi         | iral Rei | nforce | ement | Concrete Casting Depth |             | Base Plate |                       |   |   |   |    |
|        | Amount                                      |   |   |    | Length (mm) | Amount   |        |       |                        | Length (mm) |            | Thickness (mm) Anchor |   |   |   |    |
| Single | 7                                           | D | - | 32 | 640         | ø        | 12     | -     | 75                     | To - 1 mLWS |            | 10                    | 3 | - | ø | 22 |
| Batter | 5                                           | D | - | 32 | 640         | ø        | 12     | -     | 75                     | To – 1 mLWS |            | 10                    | 3 | - | ø | 22 |
|        |                                             |   |   |    |             |          |        |       |                        |             |            |                       |   |   |   |    |

T-1-1- 11

| Table 12. |
|-----------|
|-----------|

| Forces on Retaining Wall Recapitulation |        |              |  |  |  |  |  |
|-----------------------------------------|--------|--------------|--|--|--|--|--|
| Position                                | Forces | Unit         |  |  |  |  |  |
| D                                       | Н      | 2591,54 kN   |  |  |  |  |  |
| breast wall                             | Μ      | -190,67 kN.m |  |  |  |  |  |
| Foot                                    | Н      | 3239,54 Kn   |  |  |  |  |  |
| FOOL                                    | Μ      | 70,68 Kn.m   |  |  |  |  |  |
| Contilouor                              | Н      | 526,38 kN    |  |  |  |  |  |
| Canthever                               | Μ      | -55,08 kN.m  |  |  |  |  |  |
| Stiffonor                               | Н      | 185,08 kN    |  |  |  |  |  |
| Suitener                                | М      | 118,46 kN.m  |  |  |  |  |  |

Table 13.

|             | Retaining Wall Reinforcement Recapitulation |               |             |  |  |  |  |  |
|-------------|---------------------------------------------|---------------|-------------|--|--|--|--|--|
| Castion     | Flexural                                    | Shear         | Crack Width |  |  |  |  |  |
| Section     | Reinforcement                               | Reinforcement | (mm)        |  |  |  |  |  |
| Breast Wall | D25-100                                     | D13-150       | -0,041      |  |  |  |  |  |
| Foot        | D19-200                                     | D13-120       | -0,716      |  |  |  |  |  |
| Cantilever  | D32-150                                     | D13-170       | 0.006       |  |  |  |  |  |

D22-100

 Table 14.

 Rip – Rap Dimension Recapitulation

 Layer
 Type
 W (ton)
 Thickness (m)

 Primary
 Rock
 1,5
 1,7

 Secondary
 Rock
 0,15
 2

$$\omega_t = 1,73 \sqrt{\frac{EI}{\frac{Wl^2}{g}}} > \omega$$

#### 9) Retaining Wall Planning

Stiffener

There are 4 sections of retaining wall (breast wall, foot, cantilever, and stiffener). Reinforcement planning of retaining wall was calculated same as slab reinforcement planning.

Table 12 is recapitulation of forces on retaining wall. Retaining wall reinforcement recapitulation can be seen on Table 13.

## 10) Rip – Rap Planning

To retain the soil behind the jetty structure, a rip-rap structure is required. The structure is divided into 2 layers, primary and secondary.

Rip – rap planning is based on [1]. To control rip-rap stability, the Geo5 application is used to assist stability control. Table 14 is the dimensions of rip – rap. Rip – rap stability control can be seen on Table 15.

#### B. Construction Method

D16-120

The construction implementation method of open pier jetty Molotabu, Gorontalo, as follow:

-0,013

# 1) Preparation work

Including permission, land clearing, and keet director.

### 2) Lower Structure

Before upper structure work, lower structure needs to be done first. Lower structure work including; dredging, rip-rap work, retaining wall work, and pile installation.

## 3) Upper Structure

Upper structure works are pile cap work, beam work, and slab work.

#### 4) Fender and Bollard Installation

And the last one is jetty's facilities installation, there are fender and bollard installation.

#### C. Cost Estimating

In determining price of wages, materials, and equipment, the price chosen is from *Peraturan Menteri Perhubungan No*.

| Table 15.           Bin – Ban Control Recapitulation |                   |             |                |  |  |  |  |  |  |  |  |
|------------------------------------------------------|-------------------|-------------|----------------|--|--|--|--|--|--|--|--|
| Method                                               | FS                | FS min      | Status         |  |  |  |  |  |  |  |  |
| Bishop                                               | 2,54              | 1,5         | OK             |  |  |  |  |  |  |  |  |
| Fellenius/Peterson                                   | 2,21              | 1,5         | OK             |  |  |  |  |  |  |  |  |
| Spencer                                              | 2,53              | 1,5         | OK             |  |  |  |  |  |  |  |  |
| Janbu                                                | 2,53              | 1,5         | OK             |  |  |  |  |  |  |  |  |
| Morgenstern-Prince                                   | 2,53              | 1,5         | ОК             |  |  |  |  |  |  |  |  |
|                                                      |                   |             |                |  |  |  |  |  |  |  |  |
| C-                                                   | Table 16.         |             |                |  |  |  |  |  |  |  |  |
|                                                      | st Estimating Rec | apitulation |                |  |  |  |  |  |  |  |  |
|                                                      | Cost Recapitul    | ation       |                |  |  |  |  |  |  |  |  |
| No Work                                              | Breakdown         | Work I      | Price          |  |  |  |  |  |  |  |  |
| 1 Preparation Wo                                     | ork               | Rp          | 106.200.000    |  |  |  |  |  |  |  |  |
| 2 Upper Structure                                    | e Work            | Rp          | 3.569.646.300  |  |  |  |  |  |  |  |  |
| 3 Lower Structur                                     | e Work            | Rp          | 43.896.009.492 |  |  |  |  |  |  |  |  |
| 4 Jetty Facilities                                   | Work              | Rp          | 3.752.401.017  |  |  |  |  |  |  |  |  |
| Total                                                |                   | Rp          | 51.324.256.809 |  |  |  |  |  |  |  |  |
|                                                      | Table 17          |             |                |  |  |  |  |  |  |  |  |
| ]                                                    | Layout Evaluation | n Results   |                |  |  |  |  |  |  |  |  |
| T 4'                                                 | I                 | Result      |                |  |  |  |  |  |  |  |  |
| Location                                             | Information       | Dimensi     | on Unit        |  |  |  |  |  |  |  |  |
| Entrance Channel                                     | Depth             | 6,5         | -mLWS          |  |  |  |  |  |  |  |  |
| Entrance Channel                                     | Width             | 125         | m              |  |  |  |  |  |  |  |  |
| Turning Pasin                                        | Depth             | 6,5         | -mLWS          |  |  |  |  |  |  |  |  |
| Turning Dasin                                        | Diameter          | 194         | m              |  |  |  |  |  |  |  |  |
|                                                      | Depth             | 6,5         | -mLWS          |  |  |  |  |  |  |  |  |
| Berth Basin                                          | Length            | 108         | m              |  |  |  |  |  |  |  |  |
|                                                      | Width             | 50          | m              |  |  |  |  |  |  |  |  |
| Anchorage Area                                       | Radius            | 250         | m              |  |  |  |  |  |  |  |  |
|                                                      | Length            | 108         | m              |  |  |  |  |  |  |  |  |
| Jetty Dimension                                      | Width             | 20          | m              |  |  |  |  |  |  |  |  |
|                                                      | Elevation         | 3,5         | +mLWS          |  |  |  |  |  |  |  |  |
| Dredging                                             | Volume            | 20.300      | m <sup>3</sup> |  |  |  |  |  |  |  |  |
| Rip-rap                                              | Height            | 3,7         | m              |  |  |  |  |  |  |  |  |

78 *Tahun 2014* was adjusted to prices in Gorontalo by multiplying by the expensiveness index value in Gorontalo. The recapitulation of cost estimating for open pier jetty Molotabu, Gorontalo, can be seen on Table 16.

#### IV. CONCLUSION

Based on analyzis and evaluation that have been carried out, the conclusion is as follow; (1) The result of water and land layout can be seen on Table 17; (2) The result of jetty's structure can be seen on Table 18 and Table 19; (3) Construction implementation method of this project started from dredging, rip-rap work, retaining wall work, and ended with jetty's structure work; (4) Estimated cost for this project is Rp 51.324.256.809,00 (*Fifty-one billion three hundred twenty-four million two hundred fifty-six thousand eight hundred and nine rupiah*)

#### REFERENCES

- C. T. Bishop, M. A. Donelan, and K. K. Kahma, "Shore protection manual's wave prediction reviewed," *Coast. Eng.*, vol. 17, no. 1, pp. 25–48, 1992, doi: 10.1016/0378-3839(92)90012-J.
- [2] T. Shimada, "The overseas coastal area development institute of japan (ocdi) planning division, engineering division, management & operation division, economic division," *Doboku Gakkai Ronbunshu*, vol. 1987, no. 377, pp. 15–16, 1987, ISSN:: 10.2208/jscej.1987.15.
- [3] B. S. Institution, Maritime Works Part 5 Code of Practice for

| Rin                    | – Rap        | Table<br>Dimensi | e 18.<br>on Reca | pitulati | on        |          |    |
|------------------------|--------------|------------------|------------------|----------|-----------|----------|----|
| Layer                  | Туре         | Dimensi          | W (ton)          |          | Thickne   | ess (m)  |    |
| Primary<br>Secondary   | Rock<br>Rock |                  | 1,5              |          | 1,7<br>2  |          |    |
| becondury              | ROOK         |                  | 0,10             |          | -         |          |    |
|                        |              | Table            | 19               |          |           |          |    |
|                        | Struc        | ture Plan        | ning Re          | sult     |           |          |    |
| Retaining Wall         |              |                  |                  |          |           |          |    |
| Retaining Wall Length  | <b>`</b>     | 27               | m                | v        | 4         |          |    |
| Breast Wall Dimensio   | n            | 40               | v v              | 200      | cm        |          |    |
| Foot Dimension         |              | 250              | x                | 40       | cm        |          |    |
| Cantilever Dimension   |              | 15               | x                | 35       | cm        |          |    |
| Stiffener Dimension    |              | 30               | x                | 177      | cm        |          |    |
| Concrete Ouality       |              | f'c              | 35               |          |           |          |    |
| Concrete Cover         |              | 6                |                  |          | cm        |          |    |
| Reinforcement Quality  | /            | BJTP             | 280              | &        | BJTS      | 280      |    |
| Breast Wall Reinforce  | ment         | D                | 25               |          |           |          |    |
| Shear Reinforcement    |              | ø                | 13               | ø        |           |          |    |
| Jetty                  |              |                  |                  |          |           |          |    |
| Structure Dimension    |              | 108              | х                | 20       | m         |          |    |
| Crown Height           |              | +2,5             |                  |          | m LWS     | 5        |    |
| Concrete Cover         |              | 6                |                  |          | cm        |          |    |
| Slab Thickness         |              | 35               |                  |          | cm        |          |    |
| Beam Dimension         |              | 75               | х                | 50       | cm        |          |    |
| Single Pile Cap        |              | 200              | х                | 200      | х         | 100      | cm |
| Batter Pile Cap        |              | 300              | х                | 200      | х         | 100      | cm |
| Concrete Quality       |              | f'c              | 35               |          |           |          |    |
| Steel Pile Quality     |              | SKK              | 490              |          |           |          |    |
| Reinforcement Quality  | /            | BJTP             | 280              | &        | BJTS      | 280      |    |
| Slab Reinforcement     |              | D                | 22               | &        | D         | 16       |    |
| Flexural Reinforcement | nt           | D                | 19               | &        | D         | 32       |    |
| Shear Reinforcement    |              | ø                | 22               |          |           |          |    |
| Pile                   |              | SPP              | ø600             |          |           |          |    |
| Pile Depth             |              | -3               | s/d              | -17      | m LAT     |          |    |
| Fender                 |              | SCN 1            | 000 F2.7         | + Fron   | tal Pad 3 | ,8 x 2 r | n  |
| Bollard                |              | Pillar E         | Bollard 5        | JΤ       |           |          |    |

*Dredging and Land Reclamation*, 1st ed. London: BSI Group Headquarters, 2016. ISSN: 9780539084238.

- B. S. Institution, Maritime Works Part 1 Code of Practice for General Criteria, 1st ed. London: BSI Group Headquarters, 2000. ISSN: 0580331695.
- B. S. Institution, Maritime Works Part 1-4 General Code of Practice for Materials, 1st ed. London: BSI Group Headquarters, 2013. ISSN: 9784420899673.
- [6] B. S. Institution, Maritime Works Part 2 Code of Practice for The Design of Quay Walls, Jetties and Dolphin, 1st ed. London: BSI Group Headquarters, 2010. ISSN: 9780580984785.
- [7] Departemen Pekerjaan Umum, (PUBI) Peraturan Beton Bertulang Indonesia 1971 N.I - 2, 1st ed. Jakarta: Departemen Pekerjaan Umum, 1971. ISSN: 3591069355.
- Badan Standardisasi Nasional, Standar Nasional Indonesia. SNI-1725-2016-Pembebanan Untuk Jembatan, 1st ed. Jakarta: Badan Standardisasi Nasional, 2016.
- [9] Badan Standardisasi Nasional, Standar Nasional Indonesia. SNI-1726-2020-Tata Cara Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung dan NonGedung, 1st ed. Jakarta: Badan Standardisasi Nasional, 2020.
- [10] Badan Standardisasi Nasional, Standar Nasional Indonesia. SNI-1727-2020-Beban Desain Minimum dan Kriteria Terkait untuk Bangunan Gedung dan Struktur Lain, 1st ed. Jakarta: Badan Standardisasi Nasional, 2020.
- [11] Badan Standarisasi Nasional, *Baja Tulangan Beton: SNI 2052:2017*, 1st ed. Jakarta: Badan Standarisasi Nasional, 2017.
- [12] Badan Standardisasi Nasional, Standar Nasional Indonesia. SNI-2052-2017-Baja Tulangan Beton, 1st ed. Jakarta: Badan Standardisasi Nasional, 2020.
- [13] PIANC, Harbour Approach Channels Design Guidelines, 1st ed. Belgique: PIANC, 2014. ISSN: 9781523103379.