JURNAL TEKNIK ITS Vol. 5, No. 1, (2016) ISSN: 2337-3539 (2301-9271 Print)

Penentuan Lokasi DG dan Kapasitor Bank dengan Rekonfigurasi Jaringan untuk Memperoleh Rugi Daya Minimal pada Sistem Distribusi Radial Menggunakan Algoritma Genetika

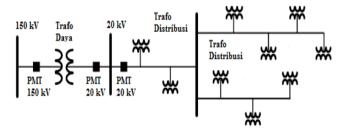
Ridho Fuaddi, Ontoseno Penangsang, Dedet Candra Riawan Jurusan Teknik Elektro, Fakultas Teknologi Industri, Institut Teknologi Sepuluh Nopember (ITS) Jl. Arief Rahman Hakim, Surabaya 60111, Indonesia *e-mail*: dedet@ee.its.ac.id

Abstrak - Jaringan distribusi yang paling umum digunakan ialah sistem dengan bentuk radial. Sistem ini memiliki bentuk yang sederhana serta biaya investasinya yang terbilang murah. Namun, kualitas pelayanan davanya relatif buruk yang terjadi akibat adanya rugi daya pada saluran yang cukup besar. Hal itu terjadi karena jaringan distribusi yang merupakan ujung dari saluran transmisi memiliki perbandingan rasio R/X yang tinggi sehingga mengakibatkan rugi daya yang besar. Terdapat beberapa cara untuk mengurangi rugi daya pada jaringan distribusi yakni dengan menggunakan rekonfigurasi jaringan, pemasangan kapasitor bank dan pemasangan unit distributed generation (DG) pada sistem distribusi. Pada tugas akhir ini, algoritma genetika merupakan metode yang digunakan untuk memecahkan suatu pencarian nilai dalam masalah optimasi penentuan lokasi DG dan kapasitor bank serta rekonfigurasi jaringan yang tepat untuk mendapatkan rugi daya yang paling minimal. Dari hasil pengujian yang telah dilakukan pada penelitian ini, diperoleh perbaikan rugi daya nyata paling optimal sebesar 94,92 % terhadap kondisi awal sistem distribusi radial 33-bus standart IEEE melalui penggabungan pemasangan DG dan kapasitor bank serta rekonfigurasi jaringan.

Kata Kunci: Genetic Algorithm, Distributed Generation, Kapasitor Bank, Rekonfigurasi Jaringan, Sistem Distribusi Radial.

I. PENDAHULUAN

ARINGAN distribusi yang paling umum digunakan ialah sistem dengan bentuk radial. Sistem ini memiliki bentuk yang sederhana serta biaya investasinya yang terbilang murah. Namun, kualitas pelayanan dayanya relatif buruk yang terjadi akibat adanya rugi daya pada saluran yang cukup besar. Hal itu terjadi karena jaringan distribusi yang merupakan ujung dari saluran transmisi memiliki perbandingan rasio R/X yang tinggi sehingga mengakibatkan rugi daya yang besar [1]. Terdapat beberapa cara untuk mengurangi rugi daya pada jaringan distribusi yakni dengan menggunakan rekonfigurasi jaringan, pemasangan capacitor bank dan pemasangan unit distributed generation pada sistem distribusi [2].


Rekonfigurasi jaringan merupakan upaya mengubah topologi jaringan dengan cara membuka atau menutup sectionalizing dan tie switch yang terdapat pada saluran. Pada kenyataannya, rekonfigurasi jaringan saja belum mampu mengurangi rugi daya secara signifikan. Sehingga perlu ditambahkan capacitor bank dan distributed generation pada lokasi yang tepat agar diperoleh rugi daya paling minimal [3]. Ketiga cara tersebut diterapkan secara serentak atau simultan pada jaringan distribusi radial. Guna mendapatkan hasil yang optimal, diperlukan suatu metode yang mampu menyelesaikan permasalahan yang bersifat optimasi.

Pada tugas akhir ini, algoritma genetika merupakan metode yang digunakan untuk memecahkan suatu pencarian nilai dalam masalah optimasi penentuan lokasi DG dan kapasitor bank serta rekonfigurasi jaringan yang tepat untuk mendapatkan rugi daya yang paling minimum [4]. Metode ini diterapkan pada jaringan distribusi radial dengan beberapa studi kasus yang berbeda. Dimulai dari penerapan dari masing-masing cara dalam mengurangi rugi daya terhadap sistem yang diujikan hingga penggabungan dari ketiganya yang dilakukan secara serentak. Hasil yang diharapkan nantinya ialah mendapatkan rugi daya terkecil dengan membandingkan setiap studi kasus yang dilakukan.

II. SISTEM DISTRIBUSI RADIAL, REKONFIGURASI JARINGAN, KAPASITOR BANK DAN DISTRIBUTED GENERATION

A. Sistem Distribusi Radial

Sistem distribusi radial merupakan sistem yang paling sering digunakan karena memiliki konfigurasi paling sederhana dan investasi terhadap sistem ini tergolong murah. Sistem tersebut dikatakan radial karena salurannya ditarik secara radial dari suatu titik yang merupakan sumber dari sistem tersebut dan dicabangkan ke titik-titik beban yang dilayaninya.

Gambar 1 Sistem Distribusi Radial 150kV/20kV

Karena hanya ada satu sumber yang menyuplai sistem dan adanya pencabangan ke titik beban yang dilayani, maka arus yang mengalir menuju ke beban disepanjang saluran menjadi tidak sama. Sehingga, luas penampang konduktor pada sistem distribusi radial ini ukurannya tidak sama. Sebab arus yang paling besar ialah yang paling dekat letaknya terhadap gardu induk. Menjadikan saluran yang paling dekat dengan gardu induk memiliki ukuran penampang yang relatif besar dibanding saluran lainnya. Semakin ke ujung maka arus yang menuju ke beban semakin kecil pula. Mengakibatkan luas penampang konduktornya lebih kecil sesuai besar arus yang mengalirinya.

Sistem ini memiliki kekurangan dalam segi kualitas pelayanan daya yang relatif buruk. Hal itu disebabkan oleh rugi daya yang cukup besar, adanya drop tegangan serta besar nilai impedansi pada tiap saluran. Sistem dengan bentuk radial ini memiliki kontinuitas pelayanan daya yang kurang baik. karena hanya memiliki satu alternatif saluran saja. Sehingga ketika terjadi gangguan pada saluran, maka saluran setelahnya akan mengalami pemadaman sampai gangguan dapat diatasi.

B. Rekonfigurasi Jaringan

Rekonfigurasi jaringan merupakan upaya mengubah topologi jaringan dengan cara membuka atau menutup sectionalizing dan tie switch yang terdapat pada saluran. Cara ini bertujuan untuk mengurangi rugi daya yang ada pada saluran distribusi. Rekonfigurasi atau Konfigurasi ulang jaringan memungkinkan sistem untuk dapat melayani beban yang sama namun dengan rugi daya yang lebih sedikit serta mencegah adanya ketidakseimbangan beban pada sistem distribusi.

Untuk mendapatkan rekonfigurasi jaringan yang paling optimal digunakan konsep branch exchange. Branch exchange merupakan cara yang paling mudah diterapkan pada sistem distribusi radial. Jika salah satu tie switch tertutup, maka akan ada loop yang terbentuk sehingga harus ada saluran dengan sectionalizing switch yang dibuka untuk mengembalikan sistem ke bentuk radial.

C. Kapasitor Bank

Kapasitor bank merupakan salah satu komponen yang sering digunakan dalam sistem distribusi listrik. Adapun keuntungan dari penggunaan kapasitor yaitu sebagai berikut:

- a. Meningkatkan kemampuan pembangkitan generator.
- b. Meningkatkan kemampuan penyaluran daya pada jaringan transmisi.
- Meningkatkan kemampuan penyaluran daya gardugardu distribusi.
- d. Mengurangi rugi-rugi pada sistem distribusi.
- e. Menjaga kualitas tegangan pada sistem distribusi.
- f. Meningkatkan kemampuan feeder dan peralatan yang ada pada sistem distribusi.

D. Distributed Generation

Distributed generation (DG) merupakan pembangkit energi listrik yang berdiri sendiri diluar pembangkit utama pada jaringan. DG terkoneksi dengan sistem distribusi untuk memenuhi kebutuhan konsumen dan memiliki kapasitas pembangkitan lebih kecil dari pada pembangkit energi listrik utama. Pada sistem distribusi, DG umumnya dipasang untuk mengurangi atau menghilangkan rugi daya pada saluran distribusi. Penentuan lokasi, besar kapasitas dan jumlah unit dari DG sangat berperan penting dalam memperoleh rugi daya yang paling minimal pada sistem distribusi.

DG memiliki macam varian kapasitas, mulai dari pembangkitan 1 Watt hingga terbesar yaitu 300MW. Berikut ini merupakan klasifikasi DG berdasarkan kapasitas pembangkitan yang dimilikinya:

Tabel 1 Kategori DG berdasarkan kapasitas

Jenis DG	Kapasitas Pembangkitan
Micro DG	1 Watt – 5kW
Small DG	5kW – 5MW
Medium DG	5MW – 50 MW
Large DG	50MW – 300 MW

E. Fungsi Objektif

Pada tugas akhir ini, fungsi objektif yang diinginkan dari penentuan lokasi DG dan kapasitor bank serta rekonfigurasi jaringan ialah total rugi daya nyata yang paling minimal. Upaya yang dilakukan untuk mendapatkan hasil terbaik ditempuh dengan cara memaksimalkan selisih antara rugi daya awal dan rugi daya setelah penempatan DG dan kapasitor bank serta rekonfigurasi terhadap sistem distribusi [5].

Fungsi objektif,

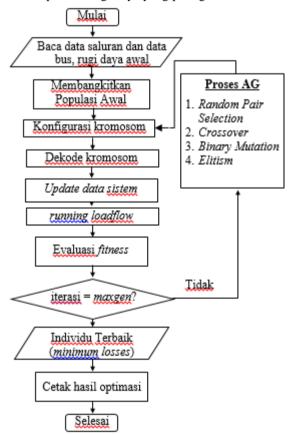
Minimize
$$P_{T,loss} = \sum_{k=1}^{nb} \frac{R_{k,k+1}}{|V_k|^2} (P_k^2 + Q_k^2)$$

Dalam upaya untuk memperoleh rugi daya yang paling minimal terdapat batasan atau constraint yang harus dipenuhi, yakni sistem tetap dijaga dalam bentuk radial, batasan daya keluaran DG dan kapasitor serta batasan tegangan yang diizinkan pada tiap bus. Daya keluaran pada DG dan kapasitor bank dibatasai dengan 2 cara:

- Menggunakan rule of thumb [6]
- Menggunakan max demand [7]

Batasan daya keluaran DG dan kapasitor bank menggunakan rule of thumb adalah 2/3 dari total beban daya aktif (3.715 MW) dan 2/3 dari total beban daya reaktif (2.3 MVAr) yakni sebesar 2.476 MW dan 1.533 MVAr. Sedangkan, batasan daya keluaran DG dan kapasitor bank menggunakan *max demand* atau pembebanan maksimum dari sistem sebesar 3.715 MW total beban daya aktif dan 2.3 MVAr total beban daya reaktif.

Batasan tegangan yang diizinkan pada tiap bus dimana selisih antara tegangan tiap bus dengan tegangan sumber yakni 12,66 KV tidak boleh melebihi 5%. Diharapkan tidak terjadi *under voltage* ataupun *over voltage* yaitu tegangan harus berada antara 0.95 p.u dan 1.05 p.u.


$$Vmin \leq |V_k| \leq Vmax$$

III. PENENTUAN LOKASI DG DAN KAPASITOR BANK SERTA REKONFIGURASI JARINGAN MENGGUNAKAN ALGORITMA GENETIKA

A. Penerapan Algoritma Genetika(AG)

Algoritma genetika berdasarkan pada proses genetik yang ada pada makhluk hidup, yakni perkembangan generasi dalam suatu populasi yang alami, secara lambat laun mengikuti prinsip seleksi alam. Dimana hanya individu yang terkuatlah yang mampu bertahan. Algoritma ini bekerja dengan sebuah populasi yang terdiri dari para individu, dimana masing-masing individu merepresentasikan sebuah solusi yang mungkin bagi permasalahan yang ada. Dalam hal ini, individu melambangkan sebuah nilai *fitness* yang akan digunakan untuk mencari solusi terbaik dari permasalahan.

Berikut ini merupakan gambar diagram alir dari penerapan algoritma genetika dalam menentukan lokasi DG dan kapasitor bank serta konfigurasi jaringan yang tepat untuk memperoleh rugi daya yang paling minimal.

Gambar 2 diagram alir algoritma genetika

Tahapan dari algoritma genetika pada tugas akhir ini:

- 1. Pembacaan data awal : pembacaan data saluran, data bus dan rugi daya sistem awal.
- Membangkitkan populasi awal : dalam membangkitkan populasi terdapat variabel yang diperlukan, yakni jumlah DG, jumlah kapasitor, tie switch yang tersedia pada sistem, jumlah individu, generasi maksimal. Individu terdiri kromosom yang dibangkitkan secara acak dan dilakukan konfigurasi kromosom. Kromosom mengangdung informasi

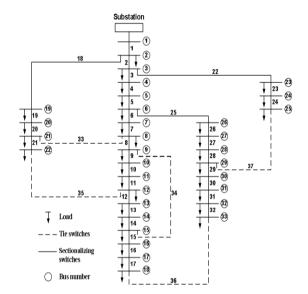
- lokasi penempatan dan daya keluaran dari DG atau kapasitor bank serta rekonfigurasi jaringan yang di optimalkan.
- 3. Dekode kromosom : kromosom dalam bentuk biner dterjemahkan ke dalam desimal.
- 4. Update data sistem : kromosom yang diterjemahkan dimasukkan ke dalam database loadflow
- Running loadflow: untuk mengetahui rugi daya yang dihasilkan. Loadflow yang digunakan menggunakan metode backward/forward dengan Zbr dan K-matrik
- Evaluasi fitness : hasil dari running loadflow dievaluasi sesuai constrain yang ditentukan. Jika tidak memenuhi constrain maka tidak akan diambil sebagai solusi
- 7. Lakukan pengecekkan, apabila belum mencapai iterasi maksimal maka lakukan proses algoritma genetika:
 - Seleksi: pemilihan calon orang tua yang akan mengalami proses evolusi dengan metode random selection.
 - Cross over: proses cross over/pindah silang yaitu dengan menyilangkan 2 kromosom induk. Proses cross over terjadi berdasarkan nilai probabilitas cross over (Pc) yang telah ditentukan yaitu sebesar 0.95.
 - Mutasi: proses mutasi dalam tugas akhir ini yaitu menggunakan mutasi biner dengan menginvers nilai dari gen yang terpilih dalam kromosom. Proses ini terjadi berdasarkan akan probabilitas mutasi yang ditentukan yaitu sebesar 0.05
 - Elitism: merupakan proses untuk mengambil nilai fitness yang paling baik pada tiap generasi untuk dibandingkan dengan nilai fitness terbaik pada generasi selanjutnya. Elitism ini berguna agar individu yang memiliki nilai fitness terbaik tidak berubah saat terjadi proses evolusi pada generasi berikutnya.

Tahap ke-7 terus berlangsung selama generasi belum maksimal dan akan mengulangi dari tahap ke-2 sampai ke-7.

8. Cetak hasil optimasi : hasil berupa lokasi dan daya keluaran DG maupun kapasitor bank serta switch yang akan diputus dan disambungkan.

Algoritma genetika diimplementasikan menggunakan MATLAB *version* R2010a pada PC ASUS A43S dengan spesifikasi: *Processor Core i5 2.3 Ghz*, RAM 2 *GB*.

IV. SIMULASI DAN ANALISIS


Pada tugas akhir ini, dilakukan simulasi dan analisis terhadap sistem distribusi radial 33-bus standart IEEE dengan 6 kasus yang berbeda, yakni:

- Kasus A: basis sistem (*original*, tanpa optimasi)
- Kasus B: rekonfigurasi jaringan terhadap basis sistem.
- Kasus C: pemasangan DG terhadap basis sistem.
- Kasus D: pemasangan DG dan rekonfigurasi jaringan terhadap basis sistem.
- Kasus E: pemasangan DG dan kapasitor Bank terhadap basis sistem.

• Kasus F: pemasangan DG dan kapasitor bank serta rekonfigurasi jaringan terhadap basis sistem.

Hasil yang diperoleh pada tiap kasusnya akan dibandingkan guna mengetahui kasus mana yang memperoleh rugi daya yang paling minimal. Bersamaan dengan itu, akan dibandingkan pula hasil yang diperoleh dari metode yang digunakan dalam menentukan batasan daya keluaran pada DG dan kapasitor bank (kasus C sampai dengan kasus F). Metode yang diterapkan ialah *rule of thumb* dan *max demand*. Pada simulasi ini, DG yang digunakan sebanyak 3 unit dan kapasitor bank berjumlah 5 unit. Pada tugas akhir ini DG hanya berfungsi menyuplai daya aktif (P). Sedangkan, kapasitor berfungsi menyuplai daya reaktif (Q).

Pada tugas akhir ini, sistem distribusi radial yang digunakan ialah sistem tes 33-bus standart IEEE. Berikut ini merupakan bentuk topologi sistem beserta data beban dan data saluran yang tersedia yang bersumber dari referensi [1].

Gambar 3 sistem distribusi radial IEEE 33-bus

Tabel 2 Data beban sistem distribusi 33-bus IEEE [1]

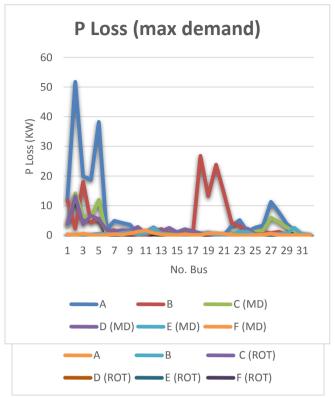
No. Bus	P _L (MW)	Q _L (MVAr)	No. Bus	P _L (MW)	Q _L (MVAr)
2	0.100	0.060	18	0.090	0.040
3	0.090	0.040	19	0.090	0.040
4	0.120	0.080	20	0.090	0.040
5	0.060	0.030	21	0.090	0.040
6	0.060	0.020	22	0.090	0.040
7	0.200	0.100	23	0.090	0.050
8	0.200	0.100	24	0.420	0.200
9	0.060	0.020	25	0.420	0.200
10	0.060	0.020	26	0.060	0.025
11	0.045	0.030	27	0.060	0.025
12	0.060	0.035	28	0.060	0.020
13	0.060	0.035	29	0.120	0.070
14	0.120	0.080	30	0.200	0.600
15	0.060	0.010	31	0.150	0.070

16	0.060	0.020	32	0.210	0.100
17	0.060	0.020	33	0.060	0.040

Tabel 3 Data saluran sistem distribusi 33-bus IEEE [1]

No. Cabang	Tabel 3 Data saluran sistem distribusi 33-bus IEEE [1]						
No. Cabang Bus Kirim Bus Ierima R (ohm) X (ohm)	Sectionalizing Switch						
2 2 3 0.4930 0.2512 3 3 4 0.3661 0.1864 4 4 4 5 0.3811 0.1941 5 5 6 0.8190 0.7070 6 6 7 0.1872 0.6188 7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739	No. Cabang	Bus Kirim	Bus Terima				
3 3 4 0.3661 0.1864 4 4 4 5 0.3811 0.1941 5 5 6 0.8190 0.7070 6 6 7 0.1872 0.6188 7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565	1	1	2	0.0922	0.0470		
4 4 5 0.3811 0.1941 5 5 6 0.8190 0.7070 6 6 7 0.1872 0.6188 7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20	2	2	3	0.4930	0.2512		
5 5 6 0.8190 0.7070 6 6 7 0.1872 0.6188 7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 <td>3</td> <td>3</td> <td>4</td> <td>0.3661</td> <td>0.1864</td>	3	3	4	0.3661	0.1864		
6 6 7 0.1872 0.6188 7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22<	4	4	5	0.3811	0.1941		
7 7 8 0.7115 0.2351 8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 2	5	5	6	0.8190	0.7070		
8 8 9 1.0299 0.7400 9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 <t< td=""><td>6</td><td>6</td><td>7</td><td>0.1872</td><td>0.6188</td></t<>	6	6	7	0.1872	0.6188		
9 9 10 1.0440 0.7400 10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091	7	7	8	0.7115	0.2351		
10 10 11 0.1967 0.0651 11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 27 0.2842 0.1447 <	8	8	9	1.0299	0.7400		
11 11 12 0.3744 0.1298 12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447	9	9	10	1.0440	0.7400		
12 12 13 1.4680 1.1549 13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338	10	10	11	0.1967	0.0651		
13 13 14 0.5416 0.7129 14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006	11	11	12	0.3744	0.1298		
14 14 15 0.5909 0.5260 15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585	12	12	13	1.4680	1.1549		
15 15 16 0.7462 0.5449 16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629	13	13	14	0.5416	0.7129		
16 16 17 1.2889 1.7210 17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619	14	14	15	0.5909	0.5260		
17 17 18 0.7320 0.5739 18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302	15	15	16	0.7462	0.5449		
18 2 19 0.1640 0.1565 19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Ter	16	16	17	1.2889	1.7210		
19 19 20 1.5042 1.3555 20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) X (ohm) 33 8 <td>17</td> <td>17</td> <td>18</td> <td>0.7320</td> <td>0.5739</td>	17	17	18	0.7320	0.5739		
20 20 21 0.4095 0.4784 21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34	18	2	19	0.1640	0.1565		
21 21 22 0.7089 0.9373 22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000	19	19	20	1.5042	1.3555		
22 3 23 0.4512 0.3084 23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 <	20	20	21	0.4095	0.4784		
23 23 24 0.8980 0.7091 24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	21	21	22	0.7089	0.9373		
24 24 25 0.8959 0.7091 25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	22	3	23	0.4512	0.3084		
25 6 26 0.2031 0.1034 26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	23	23	24	0.8980	0.7091		
26 26 27 0.2842 0.1447 27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	24	24	25	0.8959	0.7091		
27 27 28 1.0589 0.9338 28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	25	6	26	0.2031	0.1034		
28 28 29 0.8043 0.7006 29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	26	26	27	0.2842	0.1447		
29 29 30 0.5074 0.2585 30 30 31 0.9745 0.9629 31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	27	27	28	1.0589	0.9338		
30 30 31 0.9745 0.9629	28	28	29	0.8043	0.7006		
31 31 32 0.3105 0.3619 32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	29	29	30	0.5074	0.2585		
32 32 33 0.3411 0.5302 Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	30	30	31	0.9745	0.9629		
Tie switch No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	31	31	32	0.3105	0.3619		
No. Cabang Bus Kirim Bus Terima Resistansi R (ohm) Reaktansi X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	32	32	33	0.3411	0.5302		
No. Cabang Bus Kirim Bus Terima R (ohm) X (ohm) 33 8 21 2.0000 2.0000 34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	Tie switch						
34 9 15 2.0000 2.0000 35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	No. Cabang	Bus Kirim	Bus Terima				
35 12 22 2.0000 2.0000 36 18 33 0.5000 0.5000	33	8	21				
36 18 33 0.5000 0.5000	34	9	15	2.0000	2.0000		
	35	12	22	2.0000	2.0000		
37 25 29 0.5000 0.5000	36	18	33	0.5000	0.5000		
<u> </u>	37	25	29	0.5000	0.5000		

Hasil simulasi:

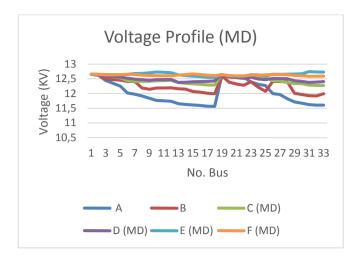

Pada kasus A dan B, masing-masing total rugi daya aktifnya adalah sebesar 202,686 KW dan 139,982 KW. Performa dari sistem pada kedua kasus tersebut tak dapat diterima. Karena melanggar batas terendah dari tegangan kerja normal, yakni berada dibawah 0,95. Tegangan yang rendah mengakibatkan lebih banyak arus yang akan diambil dari *substation*, yang direfleksikan dengan meningkatnya rugi daya. Rekonfigurasi jaringan mampu mereduksi rugi daya aktif sebesar 30,936 % dari total rugi daya awal sistem, dengan tetap menjaga sistem pada bentuk radialnya.

Pada kasus C, yakni hanya penempatan DG saja tanpa kapasitor bank dan rekonfigurasi jaringan membantu mereduksi rugi daya aktif sebesar 75,6 % (*rule of thumb*) dan 72,4 % (*max demand*) terhadap total rugi daya awal sistem dengan total daya keluaran DG 2,372 MW dan 3,04 MW masing-masingnya. Tegangan pada bus di sistem telah memenuhi constraint, berada pada 0,95-1,05 p.u.

Pada kasus D, rekonfigurasi jaringan dan penempatan DG dilakukan secara simultan. Hasil simulasi memperoleh penurunan rugi daya nyata sebesar 69,646 % (rule of thumb) dan 72,7 % (max demand) terhadap rugi daya awal sistem dengan total daya keluaran DG 2,166 MW dan 2,91 MW masingn-masingnya dengan tetap menjaga bentuk radial dari sistem. Tegangan pada tiap bus di sistem pada kasus ini telah memenuhi batasan yang telah ditetapkan.


Pada kasus E, dimana pemasangan DG dan kapasitor bank secara simultan tanpa rekonfigurasi jaringan mampu memperbaiki rugi daya nyata sebesar 91,81 % (*rule of thumb*) terhadap rugi daya awal sistem dengan total daya keluaran DG 2,37 MW dan kapasitor bank 1,564 MVAr. Sedangkan, hasil 91,78 % (*max demand*) diperoleh saat total daya keluaran DG 3,082 MW dan kapasitor bank 2 MVAr. Pada kasus ini, tegangan di tiap bus yang ada sistem berada pada *range* yang diizinkan.

Pada kasus terakhir, yakni kasus F saat dilakukan pemasangan DG dan kapasitor bank bersamaan dengan rekonfigurasi jaringan mampu mereduksi rugi daya nyata secara optimal hingga 93,073 % (*rule of thumb*) dan 94,92 % (*max demand*) dengan total daya keluaran DG dan kapasitor bank yang diinjeksikan pada masing-masing metode sebesar 2,475 MW dan 1,418 MVAr pada "*rule of thumb*", sedangkan pada "max demand" sebesar 2,9967 MW dan 1,996 MVAr. Pada kasus ini, rekonfigurasi jaringan dan batasan tegangan pada bus telah memenuhi constraint yang ditetapkan, yakni dengan tetap menjaga sistem distribusi pada pola radialnya dan tegangan pada tiap bus telah berada pada *range* yang diizinkan.



Berikut ini merupakan gambar grafik perbaikan rugi daya dan profil tegangan pada keseluruhan kasus yang telah diujikan.

Gambar 4 rugi daya kasus A-F (rule of thumb) Gambar 5 rugi daya kasus A-F (max demand)

Gambar 6 profil tegangan kasus A-F (rule of thumb)

Gambar 7 profil tegangan kasus A-F (max demand) **Tabel 4** Hasil optimasi kasus A-F

Case	Comparative Study Of Different Case Studies			
	Methodology	Max Demand	Rule of thumb	
A	Switch Opened	33, 34, 35, 36, 37	33, 34, 35, 36, 37	
	Power Loss (KW)	202.686	202.686	
	Switch Opened	7, 9, 14, 28, 32	7, 9, 14, 28, 32	
В	Power Loss (KW)	139.982	139.982	
	% Loss Reduction	30,936	30,936	
	Switch Opened	33, 34, 35, 36, 37	33, 34, 35, 36, 37	
C	Power Loss (KW)	72.397	75.615	
	% Loss Reduction	64,28	62,69	
	Switch Opened	9, 12, 28, 30,33	11, 13,28, 30,33	
D	Power Loss (KW)	55.3	61.523	
	% Loss Reduction	72,7	69,646	
	Switch Opened	33, 34, 35, 36, 37	33, 34, 35, 36, 37	
Е	Power Loss (KW)	16.656	16.592	
	% Loss Reduction	91,78	91,81	
F	Switch Opened	10,28,31, 33,34	10,13, 28,30,33	
Г	Power Loss (KW)	10,298	14.037	

	% Loss	04.02	02.074
	Reduction	94,92	93,074

V. KESIMPULAN

Berdasarkan hasil simulasi dan analisis yang telah dilakukan, dapat disimpulkan bahwa :

- 1. Pada basis sistem, terdapat rugi daya aktif sebesar 15,52 % terhadap daya aktif yang disuplai oleh *substation* (3917,686 watt). Dengan pemasangan DG dan kapasitor bank serta rekonfigurasi jaringan menggunakan metode algoritma genetika diperoleh perbaikan rugi daya aktif yang sangat optimal. Sehingga, rugi daya aktif pada sistem menjadi sangat minimal yakni sebesar 0,79 %.
- 2. Metode yang paling efektif dalam menentukan batas daya keluaran yang dihasilkan DG dan kapasitor untuk memperoleh rugi daya nyata adalah metode *rule of thumb*. Hal tersebut didasari oleh efisiensi antara rugi daya nyata yang diperoleh terhadap besar total daya keluaran yang dimiliki oleh DG dan kapasitor bank.
- 3. Penggunaan metode algoritma genetika dapat membantu menyelesaikan permasalahan yang bersifat optimasi, seperti halnya pada tugas ini yang digunakan untuk memperoleh rugi daya nyata yang paling minimal pada sistem distribusi radial yang diujikan.

DAFTAR PUSTAKA

- [1] Saonerkar, A. K. and Bagde, B.Y., "Optimized DG Placement in Radial Distribution System with Reconfiguration and Capacitor Placement Using Genetic Algorithm," in Proc. IEEE Conf. 2014, pp. 1077-1083.
- [2] J. Lavaei and S. Low, "Relationship between power loss and network topology in power system," in Proc. IEEE Conf. on Decision and Control, Dec. 15-17, 2010, pp. 4004-4011.
- [3] N. Rugthaicharoencheep and W. Wanaratwijit, "Distribution system operation for power loss minimization and improve voltage profile with distributed generation and capacitor placements," in Proc. IEEE Conf. 2011, pp. 1185-1189.
- [4] David E. Goldberg, "Genetic Algorithm in Search, Optimization & Machine Learning," Addison-Wesley, 1989.
- [5] Nitin Singh, "Optimal Sizing and Placement of DG in a Radial Distribution Network using Sensitivity based methods", Electrical and Instrumentation Engineering Department Thapar University, Patiala-147004, Punjab, India, July, 2014.
- [6] H. L. Willis, "Analytical methods and rules of thumb for modeling DG distribution interaction," in *Proc. IEEE Power Eng. Soc. Summer Meeting*, Jul. 2000, pp. 1643–1644.
- [7] A. Mohamed Imran, M. Kowsalya, D.P. Kothari, "Optimal Distributed Generation and Capacitor placement in Power Distribution Networks for Power Loss Minimization," IEEE 2014.