Sistem Pendeteksi Alat Pelindung Diri (APD) Pada Pekerja Konstruksi Berbasis Convolutional Neural Network
Submission Date: 2023-07-27 20:58:02
Accepted Date: 2023-12-14 07:40:48
Abstract
Penelitian ini bertujuan mengembangkan sistem deteksi Alat Pelindung Diri (APD) pada pekerja konstruksi menggunakan kamera dan algoritma deteksi objek YOLOv7 berbasis Convolutional Neural Network. Sistem ini memberikan pengawasan dan peringatan terhadap penggunaan APD yang tidak lengkap. Dataset yang digunakan mencakup beberapa sasaran kelas seperti orang, kepala, helm empat warna, kacamata, rompi, sarung tangan, dan sepatu keselamatan kerja. Model-model yang telah dikembangkan mencapai akurasi yang baik, terutama YOLOv7 pada jarak ideal 3 meter dan 4,5 meter dengan nilai mAP 0,912 dan 0,947 masing-masing. Pengujian mekanisme alarm menunjukkan akurasi sebesar 1,0 pada jarak 1,5 meter dan 3 meter. Namun, pada kondisi hujan dan pencahayaan kurang, akurasi model sedikit menurun. Penghalang seperti bagian tubuh atau benda menyebabkan kesulitan mendeteksi sarung tangan dan kacamata secara tepat. Usaha telah dilakukan untuk menempatkan objek secara ideal, tetapi hal ini tidak efektif dalam mendeteksi kedua objek tersebut. Penelitian ini menjadi langkah maju dengan menghadirkan lebih banyak sasaran kelas dibandingkan penelitian sebelumnya.
Keywords
Sistem; Deteksi; Alat Pelindung Diri; Convolutional Neural Network
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Teknik ITS by Direktorat Riset dan Pengabdian Masyarakat (DRPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung