Peramalan Beban Listrik Jangka Pendek Menggunakan Optimally Pruned Extreme Learning Machine (OPELM) pada Sistem Kelistrikan Jawa Timur

Januar Adi Perdana, Adi Soeprijanto, Rony Seto Wibowo
Submission Date: 2012-07-30 07:51:18
Accepted Date: 2012-09-11 00:00:00

Abstract


Peramalan beban listrik jangka pendek merupakan faktor yang sangat penting dalam perencanaan dan pengoperasian sistem tenaga listrik. Tujuan dari peramalan beban listrik adalah agar permintaan listrik dan penyediaan listrik dapat seimbang. Karakteristik beban di wilayah Jawa Timur sangat fluktuatif sehingga pada penelitian ini digunakan metode Optimally Pruned Extreme Learning Machine (OPELM) untuk meramalkan beban listrik. Kelebihan OPELM ada pada learning speed yang cepat dan pemilihan model yang tepat meskipun datanya mempunyai pola non linier. Keakuratan metode OPELM dapat diketahui dengan menggunakan metode pembanding yaitu metode ELM. Kriteria keakuratan yang digunakan adalah MAPE. Hasil dari perbandingan kriteria keakuratan menunjukkan bahwa hasil peramalan OPELM lebih baik dari ELM. Error rata-rata hasil pengujian peramalan paling minimum menunjukkan MAPE sebesar 1,3579% terjadi pada peramalan hari Jumat, sementara pada hari yang sama dengan metode ELM menghasilkan MAPE sebesar 2,2179%.

Keywords


Peramalan Beban Listrik Jangka Pendek, OPELM, ELM

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Direktorat Riset dan Pengabdian Masyarakat (DRPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung