Implementasi Prediksi Siswa Dropout pada MOOC Menggunakan Metode Stacking Super Learner dalam Lingkungan Komputasi Berkinerja Tinggi
Submission Date: 2023-08-01 21:46:09
Accepted Date: 2024-05-06 09:19:59
Abstract
Permasalahan utama di berbagai platform MOOC (massive open online course), yaitu tingginya tingkat dropout yang bahkan dapat mencapai 91%–93%. Hal ini tentu berdampak terhadap profitabilitas bisnis MOOC. Oleh sebab itu, diperlukan model prediksi siswa dropout pada MOOC untuk memungkinkan adanya intervensi pencegahan dropout. Namun, besarnya ukuran data siswa MOOC membuat proses pemodelan tersebut memerlukan komputasi yang tinggi. Dengan melihat permasalahan tersebut, maka penelitian ini membangun model prediksi menggunakan metode stacking yang mutakhir, yakni Super Learner, dan dikomputasikan secara paralel menggunakan GPU atau CPU dalam lingkungan komputasi berkinerja tinggi. Pembelajar dasar yang menyusun model Super Learner meliputi Logistic Regression, KNN, SVM, Naïve Bayes, Random Forest, dan XGBoost, sedangkan meta-learner yang dieksperimenkan adalah NNloglik (non-negative binomial likelihood maximization) dan AUC-maxim (AUC maxi-mization). Hasil eksperimen menunjukkan bahwa Super Learner dengan meta-learner AUC-maxim maupun NNloglik berhasil mengungguli kinerja model pembelajar dasar dan model yang menggunakan metode stacking lainnya, yaitu Stacked Generalization. Kedua model tersebut mencapai skor F1 secara berurutan sebesar 0,90139 dan 0,90126. Di samping itu, ditemu-kan bahwa paralelisasi GPU pada percobaan ini menghasilkan speedup komputasi hingga 2,4–23,3 kali lebih unggul daripada paralelisasi pada CPU.
Keywords
Komputasi Berkinerja Tinggi; MOOC Dropout; Stacking; Super Learner
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Teknik ITS by Direktorat Riset dan Pengabdian Masyarakat (DRPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung