Deteksi Otomatis Bidang Kepala Janin dari Citra Ultrasonografi 2 Dimensi
Submission Date: 2019-07-26 14:00:50
Accepted Date: 2020-07-15 00:00:00
Abstract
Modalitas pencitraan primer untuk untuk pemeriksaan anatomi dan fisiologi janin adalah alat ultrasonografi (USG) medis 2 dimensi mengingat harganya yang murah, ketersediaan yang melimpah, kemampuan realtime, dan tidak adanya bahaya radiasi. Head Circumference (HC) merupakan parameter pengukuran biometri janin yang dianalisa untuk mengetahui perkembangan janin secara kuantitatif dengan menggunakan mesin USG. Pada praktik klinis, karena rasio signal-to-noise yang rendah, klinisi seringkali mengalami kesulitan untuk mengenali bidang janin dengan tepat. Lebih dari itu, klinisi kesulitan untuk membuat elips yang paling mendekati hanya dengan tiga titik parameter minor dan mayor yang disediakan mesin USG. Proses deteksi dan pengukuran HC secara manual oleh klinisi membutuhkan waktu yang cukup lama dan akurasinya sangat bergantung dengan pengalaman dan kemampuan klinisi. Penelitian mengenai deteksi dan pengukuran otomatis HC sedang menjadi bidang penelitian yang cukup aktif. Dalam penelitian ini diajukan sebuah sistem deteksi otomatis untuk HC. Metode Convolutional Neural Network (CNN) diajukan untuk melakukan klasifikasi bidang elips janin dari jaringan ibu maupun jaringan janin lainnya. CNN dipekerjakan untuk pixel-wise classification citra ke dalam kelas bidang janin, maternal tissue, ataupun background. Pada penelitian ini, dari 13 citra uji, didapatkan rata rata akurasi segmentasi semantik sebesar 0.76.
Keywords
Convolutional Neural Network; Head Circumference; Semantic Segmentation.
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Teknik ITS by Direktorat Riset dan Pengabdian Masyarakat (DRPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung