Analisis Kinerja Peramalan dan Klasifikasi Permintaan Auto Parts Berbasis Data Mining

Defa Ihsan Ramadhan, Budi Santosa
Submission Date: 2020-08-13 09:28:34
Accepted Date: 2021-01-25 18:08:50

Abstract


Kontribusi after sales service yang besar terhadap profit dan pertumbuhan bisnis menyebabkan spare part management menjadi faktor yang penting untuk bersaing di pasar. Termasuk bagi PT. X, produsen mobil penumpang dengan market share terbesar secara global di tahun 2019. Berbagai upaya spare part management telah dilakukan PT. X untuk memenuhi kebutuhan part domestik maupun ekspor. Salah satu upayanya adalah melakukan perencanaan produksi bulanan (Getsudo), termasuk peramalan permintaan spare part setiap bulannya, akan tetapi, metode peramalan Moving Average, yang saat ini digunakan untuk semua spare part di PT. X, kurang efektif pada beberapa pola permintaan spare part yang variasinya tinggi. Penyimpangan pada hasil peramalan berdampak pada lead time back order dan biaya material handling yang semakin besar. Berdasarkan hal tersebut, maka PT. X memerlukan perbaikan terhadap sistem peramalan spare part-nya. Penelitian ini memiliki dua tujuan utama. Tujuan pertama adalah mengusulkan metode klasifikasi spare part berdasarkan pola permintaannya sebelum diramalkan. Tujuan kedua adalah menentukan metode peramalan yang paling sesuai untuk masing-masing kelompok spare part dengan cara membandingkan empat metode peramalan, yaitu: Croston, Modifikasi Croston, SVR, dan ANN. Seluruh metode peramalan dibandingkan berdasarkan parameter forecasting error dan robustness. Hasil penelitian ini menunjukkan bahwa metode SVR memiliki kinerja yang lebih unggul dari metode lainnya di tahap training maupun testing. Selain itu, ketika diimplementasikan untuk peramalan multi-periode, metode SVR juga lebih unggul dan dapat memperbaiki kesalahan peramalan sebesar 19% dari metode peramalan yang saat ini digunakan oleh PT. X.

Keywords


ANN; Data Mining; K-Medoids; Spare Part Management; SVR.

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Teknik ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung