Identifikasi Area Terdampak Oil Seep di Darat dari Data Foto Udara Menggunakan Metode Object Based Image Analysis dan Convolutional Neural Networks (Studi Kasus: Kelurahan “X”)
Submission Date: 2021-08-31 21:21:43
Accepted Date: 2021-12-22 11:53:11
Abstract
Rembesan minyak merupakan salah satu peristiwa yang merugikan lingkungan pada industri minyak dan gas. Hal ini dikarenakan senyawa kimia yang terkandung pada rembesan minyak dapat mengakibatkan penurunan kualitas lingkungan hidup. Rembesan minyak (Oil Seep) tidak hanya terjadi di wilayah perairan, tetapi juga di daratan, yang terserap oleh tanah. Kejadian ini dapat mengindikasikan adanya sistem perminyakan di bawah permukaan tanah. Dalam penelitian ini daerah terdampak rembesan minyak diidentifikasi menggunakan metode deep learning dengan Convolutional Neural Networks dimana mesin diharapkan meniru sistem kerja otak manusia dalam mengidentifikasi objek. Data foto udara yang telah terorthorektifikasi dilakukan proses segmentasi untuk membantu proses pelabelan training data pada tahap selanjutnya. Training data tersebut menjadi data masukan pada tahap train deep learning model, dan akan dilakukan proses klasifikasi piksel untuk mendeteksi area terdampak oil seep. Hasil pengolahan berupa tingkat akurasi model mencapai 93% dan raster yang menampilkan area terdampak oil seep, yang kemudian dihitung luasan areanya, dan menghasilkan perhitungan area terdampak oil seep seluas ±1,4 hektar.
Keywords
Oil Seep; Rembesan Minyak; Deep Learning; Convolutional Neural Networks; Pembobotan; Area Terdampak Rembesan Minyak
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Teknik ITS by Direktorat Riset dan Pengabdian Masyarakat (DRPM) ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/teknik.
Statistik Pengunjung