Identifikasi Genre Musik dengan Menggunakan Metode Random Forest

Muhammad Abid As Sarofi, Irhamah Irhamah, Adatul Mukarromah
Submission Date: 2020-01-30 17:36:18
Accepted Date: 2020-06-16 00:00:00

Abstract


Genre musik merupakan pengelompokkan musik sesuai dengan kemiripan antara satu musik dengan musik yang lainnya. Hal yang paling penting dalam pengidentifikasian musik adalah pengelompokkan genre musik. Pengelompokan tersebut dilakukan secara manual pada umumnya dengan mendengarkan secara langsung lagu tersebut. Namun, hal tersebut dapat menimbulkan ketidakefisiensian. Oleh karena itu, dilakukan penelitian yang bertujuan untuk mengidentifikasi sebuah lagu dengan menggunakan metode Random Forest dengan data yang digunakan adalah GTZAN dataset yang diperoleh dari laman MARSYAS. Metode supervised learning yang digunakan yaitu Random Forest karena metode tersebut lebih baik dalam hal mengklasifikasikan data karena bersifat robust terhadapt outliers dan noise. Fitur ekstraksi yang digunakan dalam penelitian ini adalah MFCC karena mampu mengadaptasi pendengaran manusia. Model yang digunakan untuk identifikasi genre musik memiliki performa klasifikasi yang tinggi dengan penggunaan KCV untuk pembagian data training dan testing.

Keywords


Genre Musik; GTZAN dataset; KCV; MFCC; Random Forest

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at http://ejurnal.its.ac.id/index.php/sains_seni.