Deteksi Kapal di Laut Indonesia Menggunakan YOLOv3
Submission Date: 2020-11-27 13:24:20
Accepted Date: 2021-08-16 13:37:07
Abstract
Indonesia adalah negara kepulauan terbesar di dunia yang memiliki kandungan kekayaan dan sumber daya alam laut yang sangat berlimpah. Hal ini memicu terjadinya peristiwa seperti illegal fishing, illegal mining, illegal logging, drugs trafficking dan people smuggling yang menunjukkan bahwa kurang maksimalnya pengawasan wilayah laut Indonesia. Pesatnya perkembangan teknologi di bidang kecerdasan buatan mendorong ditemukannya deep learning, salah satunya yaitu metode You Only Look Once (YOLO) yang dikembangkan dengan algoritma untuk mendeteksi sebuah objek secara realtime. Dalam penelitian ini, deteksi tipe kapal dilakukan dengan menggunakan YOLOv3 dan dievaluasi dengan menghitung nilai Mean Average Precision (mAP) yang dibandingkan hasilnya dengan ground truth. Hasil deteksi tipe kapal menggunakan YOLOv3 dengan k-means anchor box dapat mengenali tipe kapal pada citra satelit, diperoleh nilai mAP hingga 95,06% pada data training serta 50,41% pada data testing.
Keywords
Convolutionanl Neural Network; Deep Learning; K-means Anchor Box; Mean Average Precision; YOLOv3.
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.