Sistem Deteksi Kemiripan Antar Dokumen Teks Menggunakan Model Bayesian Pada Term Latent Semantic Analysis (LSA)

Danang Wahyu Wicaksono, Mohammad Isa Irawan, Alvida Mustika Rukmi
Submission Date: 2014-08-20 14:41:27
Accepted Date: 2014-09-14 11:50:41

Abstract


Metode Latent Semantic Analysis(LSA) adalah suatu metode yang mampu merepresentasikan hubungan antar dokumen teks melalui term serta dapat menilai kemiripan antar dokumen teks tersebut. Namun, metode LSA hanya menilai kemiripan antar dokumen teks melalui frekuensi term yang ada pada masing-masing dokumen teks sehingga mempunyai kelemahan yaitu tidak memperhatikan urutan atau tata letak term tersebut yang secara tidak langsung berpengaruh pada makna yang terkandung pada masing-masing dokumen. Oleh karena itu, digunakan model Bayesian pada term yang dihasilkan oleh LSA tersebut untuk menjaga dan memperhatikan urutan termdalam mendeteksi kemiripan antar dokumen teks sehingga struktur kalimat tetap terjaga dan mendapat hasil penilaian kemiripan antar dokumen teks yang lebih baik.Jika terdapat dua dokumen yang saling salin (copy) namun struktur kalimatnya diubah dan dibandingkan pada LSA dengan menggunakan cosine similarity maka akan didapat hasil yang sama seperti kedua dokumen ini dibandingkan tanpa perubahan struktur kalimat, sedangkan jika dibandingkan dengan menggunakan model Bayesian pada term, dokumen-dokumen yang mempunyai perbedaan struktur kalimat akan diperlakukan berbeda.

Keywords


model Bayesian; LSA; document similarity

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Lembaga Penjaminan Mutu, Pengelolaan dan Perlindungan Kekayaan Intelektual (LPMP2KI) ITS
Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.