Penerapan Bootstrap pada Neural Network untuk Peramalan Produksi Minyak Mentah di Indonesia
Submission Date: 2013-08-21 16:36:03
Accepted Date: 2013-09-01 00:00:00
Abstract
Sumberdaya alam yang tidak dapat diperbaharui adalahminyak bumi. Saat jumlah konsumsi mengalami peningkatan, tetapi tidak sejalan denganpeningkatan jumlah produksinya, maka terjadi kesenjangan antara konsumsi minyakmentah dan produksi minyak mentah. Produksi minyak mentah dapat diramalandengan menggunakan time series forecastingatau dengan metode ARIMA dimana modeldiasumsikan sebagai fungsi linier. Ketikamodel linier menghasilkan akurasi peramalan yang kecil, kemungkinan modelnonlinier mampu menjelaskan. Salah satu model nonlinier untuk time series forecasting adalah artificial neural network. Pada penelitan ini dilakukan resampling terhadap unit input untuk melihat signifikan bobot neural network dengan melihat selangkepercayaan dari bootstrap.Perbandingan model antara model ARIMA, neuralnetwork dan neural network dengan bootstrap dalam peramalan produksiminyak mentah di Indonesia didapat bahwa model yang paling baik menggambarkandata adalah model neural network. Tetapiuntuk jumlah input neural network palingsedikit dengan menggunakan hasil dari bootstrapyang sudah di hilangkan input yang tidak signifikan, yaitu hanya memasukkan duaunit input layer. HHH
Keywords
minyak mentah; neural network; boostrap
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.