Text Clustering pada Akun TWITTER Layanan Ekspedisi JNE, J&T, dan Pos Indonesia Menggunakan Metode Density-Based Spatial Clustering of Applications with Noise (DBSCAN) dan K-Means
Submission Date: 2019-07-29 21:51:39
Accepted Date: 2020-02-03 00:00:00
Abstract
Tingginya minat masyarakat untuk berbelanja online membuat meningkatnya layanan ekspedisi yang digunakan untuk mengirimkan produk dari transaksi secara online maupun offline. Ada banyak perusahaan ekspedisi yang populer di Indonesia misalnya JNE, J&T, dan Pos Indonesia. Perusahaan ekspedisi gencar melakukan promosi lewat media sosial, misalnya saja Twitter. Akun Twitter ini dapat digunakan sebagai media bagi pelanggan untuk memberikan pendapat, kritik maupun saran, dan bagi pihak perusahaan untuk memberikan tanggapan maupun informasi. Analisis terhadap twitter yang dikirim, berguna bagi perusahaan untuk meningkatkan performa layanan. Dokumen twitter berupa teks sehingga diperlukan text mining untuk menganalisisnya. Dalam penelitian ini, text clustering di-gunakan untuk mengelompokkan pendapat menjadi beberapa kategori. Metode yang digunakan adalah metode K-Means dan Density-Based Spatial Clustering of Applications with Noise (DBSCAN). DBSCAN adalah sebuah metode yang membentuk cluster dari data-data yang saling berdekatan/rapat, sedangkan data yang saling berjauhan tidak akan menjadi anggota cluster. Sedangkan K-Means merupakan teknik clustering yang sederhana dan cepat dalam proses clustering obyek serta mampu mengelompokkan data dalam jumlah yang cukup besar. Ber-dasarkan nilai silhouette coefficient, metode DBSCAN lebih baik daripada K-Means dalam mengelompokkan tweet yang ditujukan kepada layanan ekspedisi JNE, J&T, dan Pos Indonesia karena menghasilkan silhouette coefficient yang lebih tinggi.
Keywords
Clustering; Ekspedisi; DBSCAN; K-Means; Text Mining
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.