Peramalan Permintaan Semen di PT. XYZ Menggunakan Time Series Regression dan ARIMA
Submission Date: 2021-08-05 09:26:21
Accepted Date: 2022-02-27 00:00:00
Abstract
Tahun 2020, infrastruktur pembangunan di Indonesia sedikit terhambat karena adanya penyesuaian anggaran APBN akibat pandemi Covid-19. Hal ini turut menyebabkan permintaan semen nasional ikut menurun yang juga berimbas pada jumlah permintaan semen di PT. XYZ. Penurunan jumlah permintaan semen di PT. XYZ juga terjadi pada waktu bulan Ramadhan hingga Hari Raya Idul Fitri setiap tahunnya. Hingga saat ini PT. XYZ masih menggunakan metode winter’s exponential smoothing, dekomposisi, dan Time Series Regression (TSR) untuk meramalkan jumlah permintaan ssemen periode yang akan datang, namun ketiga metode ini masih menghasilkan nilai kesalahan yang besar. Pada penelitian ini, akan dilakuka peramalan jumlah permintaan semen di PT. XYZ menggunakan data bulanan sejak Januari 2015 hingga Desember 2020. Metode peramalan yang digunakan adalah TSR dengan menambahkan efek intervensi adanya Covid-19, efek variasi kalender waktu terjadinya bulan Ramadhan hingga Hari Raya Idul Fitri, serta efek musiman. Metode iki akan dibandingkan dengan metode peramalan lainnya yaitu ARIMA. Hasil penelitian yang diperoleh menunjukkan bahwa model TSR dengan variabel dummy berupa efek intervesi adanya Covid-19, efek variasi kalender waktu terjadinya bulan Ramadhan hingga Hari Raya Idul Fitri, serta efek musiman periode bulan 2,8,9,10, dan 11. Hasil ramalannya menunjukkan adanya kenaikan jumlah permintaan semen dari tahum 2020.
Keywords
ARIMA; Intervensi; Peramalan; Permintaan Semen; Time Series Regression; Variasi Kalender; Musiman
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.