Analisis Sentimen Pengguna Twitter terhadap Program Kartu Prakerja di Tengah Pandemi Covid-19 Menggunakan Metode Naïve Bayes Classifier
Submission Date: 2021-08-08 19:47:48
Accepted Date: 2022-02-27 00:00:00
Abstract
Indonesia mengkonfirmasi virus corona penyebab COVID-19 masuk pertama kali pada awal Maret 2020. Sejak itu seluruh sektor terdampak dari pandemi COVID-19 tak hanya kesehatan, sektor ekonomi juga menagalami dampak serius akibat pandemi ini. Pemerintah melakukan berbagai upaya penanggulangan salah satunya adalah dengan melakukan Pembatasann Aktivitas Berskala Besar (PSBB). Kebijakan PSBB berpengaruh pada aktivitas bisnis yang berimbas pada perekonomian sehingga berdampak pada situasi ketenagakerjaan di Indonesia. Dalam mengatasi masalah ketenagakerjaan pemerintah membuat kebijkan program Kartu Prakerja. Masalahnya muncul persepsi bahwa ditengah pandemi COVID-19 ini, logika Kartu Prakerja tidak tepat digunakan sebab tak ada jaminan bahwa pekerja yang telah dilatih mendapatkan pekerjaan baru, apalagi ditengah kondisi ekonomi yang sedang terpuruk. Akibatnya timbul pro dan kontra dari masyarakat terkait Kartu Prakerja yang sempat menjadi trending topic di Twitter. Hasil analisis sentimen program kartu prakerja kebanyakan bersifat negatif. Sentimen negatif disini menunjukkan kritik masyarakat mengenai kesulitan saat proses pendaftaran. Sentimen positif menunjukkan bahwa banyak yang mendapatkan manfaat dengan adanya program kartu prakerja. Hasil klasifikasi menggunakan metode naïve bayes classifier didapatkan nilai nilai G-mean sebesar 80,1% dan nilai AUC sebesar 81,2%. Sedangkana pada data testing nilai G-mean sebesar 69,2% dan nilai AUC sebesar 73,4%.
Keywords
Analisis Sentimen; Kartu Prakerja; Naïve Bayes Classifier
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.