Estimasi Tingkat Inflasi Nasional Menggunakan ARCH-GARCH Filter Kalman
Submission Date: 2021-08-23 20:05:30
Accepted Date: 2022-07-12 00:00:00
Abstract
Tingkat inflasi nasional merupakan salah satu indikator yang penting dalam menganalisis pertumubuhan perekonomian suatu negara. Tingkat inflasi yang tidak dikelola dengan baik dapat menyebabkan perekonomian suatu negara mengalami kemunduran. Pada data tingkat inflasi nasional digunakan model ARIMA (Autoregressive Integrated Moving Average) dan terdeteksi terdapat adanya heteroskedastisitas, sehingga digunakan model time series ARCH-GARCH (Autoregressive Conditional Heteroskedasticity-Generalized Conditional Heteroskedasticity). Model yang sesuai yaitu ARCH(1) dengan nilai MAPE (Mean Absolute Percentage Error) yang masih sangat besar yaitu 34,662%. Oleh karena itu, untuk mendapatkan nilai error yang lebih kecil dilakukan perbaikan error dengan menggunakan Filter Kalman. Hasil akhir menunjukkan bahwa Filter Kalman mampu memperbaiki hasil estimasi yang ditandai dengan nilai MAPE ARCH-Filter Kalman lebih kecil dibandingkan dengan model ARCH. Hasil estimasi terbaik pada data tingkat inflasi nasional adalah Filter Kalman polinomial derajat 2 dengan nilai Q=R=0,01 yang memiliki nilai MAPE terkecil yaitu 1,0035%.
Keywords
ARCH-GARCH; Filter Kalman; Tingkat Inflasi
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.