Klasifikasi Respons Terhadap Vaksinasi Covid-19 Berdasarkan Tweets Menggunakan Attention-Based Long Short Term Memory
Submission Date: 2022-02-08 12:53:05
Accepted Date: 2023-03-13 00:00:00
Abstract
Media sosial memudahkan masyarakat dalam mendapatkan informasi dan menuangkan pendapat, saran atau kritiknya dalam peristiwa tertentu. Vaksinasi virus COVID-19 di Indonesia yang sedang hangat diperbicangkan dan mendapatkan beragam respons dari masyarakat baik pro maupun kontra, dapat dimanfaatkan untuk melakukan analisis terhadap respons tersebut. Untuk mendukung analisis tersebut, dilakukan klasifikasi respons dari masyarakat Indonesia terhadap vaksinasi COVID-19 menjadi tiga kelas yaitu negatif, netral, dan positif. Untuk proses klasifikasi respons tersebut, diimplementasikan metode Attentional-based Long Short Term Memory atau A-LSTM. Disisi lain, penelitian ini juga mengimplementasikan Bidirectional Encoder Representation Transformer (BERT) sebagai metode pada proses tokenisasi untuk memperoleh representasi fitur dari data Tweet sehingga membantu proses pelatihan A-LSTM. Proses evaluasi dilakukan dengan menggunakan dataset Tweets Bahasa Indonesia dari media sosial Twitter dimulai dari diangkatnya isu vaksinasi COVID-19 di Indonesia. Hasil dari metode ini menunjukkan kinerja yang baik dengan nilai akurasi sebesar 82%.
Keywords
Analisis Sentimen; Attention-based Long Short Term Memory (A-LSTM); Media Sosial; Twitter
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.