Penerapan Metode Kalman Filter dalam Estimasi Harga Saham Menggunakan Model ARCH-GARCH
Submission Date: 2022-07-28 22:43:56
Accepted Date: 2023-05-01 00:00:00
Abstract
Saham merupakan produk pasar modal yang menjadi salah satu instrumen investasi. Banyak investor yang memilih saham sebagai instrumen investasi dikarenakan saham memberikan keuntungan yang menarik. Metode estimasi merupakan metode yang tepat bagi para investor untuk memprediksi harga saham sehingga dapat membantu mengoptimalkan keuntungannya. Penelitian ini bertujuan untuk menentukan model terbaik dari data harga saham menggunakan model ARCH-GARCH dan mendapatkan hasil estimasi harga saham menggunakan metode Kalman Filter dengan model ARCH-GARCH untuk periode selanjutnya. Adapun data harga saham yang digunakan yaitu data harga saham PT. Telkom Indonesia Tbk yang diambil dari website resmi Yahoo Finance. Data yang diambil adalah data harga saham saat penutupan (close) periode 29 Februari 2020 sampai 31 Agustus 2021. Pada data harga saham digunakan model ARIMA (Autoregressive Integrated Moving Average) dan terdeteksi terdapat unsur heteroskedastisitas, sehingga digunakan model time series ARCH-GARCH (Autoregressive Conditional Heteroskedasticity Generalized Autoregressive Conditional Heteroskedasticity). Didapatkan model terbaik yaitu GARCH (1,1) dengan model ARIMA (2,1,3). Pada penerapan metode Kalman Filter didapatkan hasil estimasi harga saham lebih akurat yaitu mendekati data aktual yang ditandai dengan nilai MAPE (Mean Absolute Percentage Error) pada GARCH-Kalman Filter lebih kecil dibandingkan nilai MAPE pada model GARCH (1,1).
Keywords
ARIMA; ARCH-GARCH; Kalman Filter; Harga Saham
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.