Komparasi Deteksi Kecurangan pada Data Klaim Asuransi Pelayanan Kesehatan Menggunakan Metode Support Vector Machine (SVM) dan Extreme Gradient Boosting (XGBoost)

Alan Catur Nugraha, Mohammad Isa Irawan
Submission Date: 2022-08-02 13:22:32
Accepted Date: 2023-05-01 00:00:00

Abstract


Pada era informasi ini banyak proses digitalisasi di berbagai bidang kehidupan maka semakin penting juga informasi yang didapatkan dari kumpulan data yang ada. Dampak dari perkembangan ini adalah semakin mudah terlihat kejanggalan pada data yang biasa terjadi dikarenakan adanya praktek kecurangan atau fraud. Deteksi adanya fraud pada layanan kesehatan penting dilakukan untuk dalam pengambilan keputusan yang diambil penyedia layanan kesehatan. Fraud pada layanan kesehatan itu sendiri merupakan masalah utama yang sering dialami penyedia layanan kesehatan saat ini yang merugikan banyak pihak di dalamnya. Oleh karena itu, penelitian ini membahas bagaimana cara mendeteksi fraud pada pelayanan kesehatan dengan cara machine learning. Machine learning adalah cara peningkatan kemampuan mesin dalam menyelesaikan masalah yang baru. Metode machine learning yang digunakan adalah klasifikasi Support Vector Machine (SVM) dan metode klasifikasi Extreme Gradient Boosting (XGBoost) yang hasilnya dibandingkan untuk melihat model yang lebih baik. Hasil yang didapatkan adalah hasil yang berhasil mendeteksi data fraud pada data pelayanan kesehatan tersebut dengan performa klasifikasi yang baik dalam membantu memberikan referensi pada penyedia layanan dalam mendeteksi fraud . Metode XGBoost menghasilkan performa klasifikasi yang baik dengan menghasilkan nilai Balanced Accuracy dan nilai Recall sebesar 0.9995 dan 0.9994.

Keywords


Extreme Gradient Boosting; Fraud Detection; Healthcare; Support Vector Machine

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.