Analisis Dinamika Harga Saham yang Dipengaruhi oleh Analisis Sentimen di Media Sosial Menggunakan Algoritma Support Vector Machine

Antonio Galileo Tando, Mohammad Isa Irawan
Submission Date: 2022-08-02 13:24:43
Accepted Date: 2023-05-01 00:00:00

Abstract


Saham dapat dideskripsikan sebagai tanda penyertaan modal pribadi atau pihak (badan usaha) dalam suatu perusahaan atau perseroan terbatas. Indeks LQ-45 terdiri atas 45 saham yang terpilih berdasarkan likuiditas perdagangan saham dan disesuaikan setiap enam bulan atau dua periode, maka saham yang terdapat dalam indeks tersebut akan selalu berubah. Analisis sentimen atau opinion mining merupakan studi komputasi dalam opini, sentimen, dan emosi yang diungkapkan dalam sebuah teks. Algoritma yang digunakan untuk melakukan klasifikasi adalah Support Vector Machine yang termasuk dalam algoritma supervised learning yang dapat digunakan untuk mengklasifikasikan teks secara otomatis. Pada penelitian ini, pre-processing teks yang digunakan adalah case folding, tokenizing, normalization, stopwords, dan stemming. Hasil klasifikasi untuk analisis sentimen dengan algoritma SVM menghasilkan accuracy rata-rata sebesar 75%. Kata-kata yang sering muncul pada masing-masing perusahaan, pada dataset sentimen positif adalah kata “bantu”, “kuat”, dan “sehat”. Sedangkan pada dataset negatif didominasi oleh kata “turun”, “tahan”, dan “bawah”. Hasil korelasi Rank Spearman menunjukkan beberapa perusahaan saham yaitu ANTM, BMRI, dan TLKM menghasilkan bahwa sentimen positif memiliki korelasi yang lemah dengan harga saham, sedangkan sentimen negatif tergolong tidak memiliki korelasi dengan harga saham.

Keywords


Analisis sentimen; Klasifikas; Rank Spearman; Saham; Support Vector Machine

Full Text: PDF

CC Licencing


Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).

Refbacks

  • There are currently no refbacks.


Creative Commons License
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.