Penerapan Random Forest untuk Mengukur Tingkat Keparahan Penyakit pada Daun Apel
Submission Date: 2019-07-29 17:59:47
Accepted Date: 2020-01-30 00:00:00
Abstract
Tingkat keparahan penyakit pada tanaman merupakan salah faktor penting untuk diketahui sebagai upaya pengendalian hama dan penyakit yang dapat berpengaruh penting dalam perkembangan tanaman. Teknologi pengolahan citra digital (Digital Image Processing) saat ini berkembang semakin pesat, salah satunya dalam bidang pertanian. Pada penelitian tugas akhir ini, dilakukan pengukuran tingkat keparahan penyakit pada daun apel dengan menggunakan metode klasifikasi Random Forest. Pengukuran tingkat keparahan penyakit pada daun apel dilakukan dalam beberapa tahapan proses yaitu pra-pengolahan citra, segmentasi citra menggunakan K-means clustering, ekstraksi fitur ukuran, bentuk dan warna pada citra dan yang terakhir klasifikasi menggunakan metode Random Forest. Data citra yang digunakan sejumlah 467 citra daun apel dan menghasilkan kinerja klasifikasi Random Forest dengan akurasi yang menunjukkan bahwa metode Random Forest mampu mengukur tingkat keparahan penyakit pada daun apel dengan akurasi tertinggi pada proses pelatihan sebesar 100% dan nilai akurasi tertinggi pada proses pengujian sebesar 75.3191%.
Keywords
Penyakit Tanaman; Daun Apel; Tingkat Keparahan; Random Forest
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.