Penerapan Metode Ridge Regression dan Support Vector Regression (SVR) untuk Prediksi Indeks Batubara di PT XYZ
Submission Date: 2020-01-29 22:35:44
Accepted Date: 2020-06-15 00:00:00
Abstract
Semen merupakan salah satu bahan baku yang amat penting dalam pembangunan infrastruktur. Salah satu perusahaan yang bergerak di bidang produksi semen adalah PT XYZ. Tahapan terpenting dalam proses pembuatan semen adalah pada tahap pembakaran batu kapur dan tanah liat (clinker). Dalam proses pembakaran clinker membutuhkan bahan bakar utama yaitu batubara. Semakin banyak jumlah produksi clinker yang dihasilkan dan semakin sedikit batubara yang digunakan dalam proses pembakaran, maka semakin efektif dan efisien proses produksi tersebut. Dalam penelitian ini akan dilakukan analisis untuk memprediksi indeks batubara dengan beberapa variabel yang diduga mempengaruhi yaitu kualitas batubara, bahan baku, dan operasional yang kemudian akan dilakukan estimasi terhadap indeks batubara. Metode yang digunakan untuk mengestimasi indeks batubara adalah metode Regresi Ridge dan metode Support Vector Regression (SVR). Model yang terbentuk dengan metode SVR akan dibandingkan dengan metode regresi ridge yang kemudian akan dipilih model terbaiknya diantara kedua model yang terbentuk menggunakan nilai RMSE. Hasil analisis didapatkan metode terbaik dengan nilai RMSE terkecil yaitu Support Vector Regression (SVR) dan menggunakan kernel-polynomial yang menghasilkan parameter sigma bernilai 0,100 dan nilai c sebesar 1 dengan nilai RMSE sebesar 0,619.
Keywords
Batubara; Clinker; Indeks; Ridge; Support Vector Regression
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.