Klasifikasi Sentimen Ulasan Film Indonesia dengan Konversi Speech-to-Text (STT) Menggunakan Metode Convolutional Neural Network (CNN)
Submission Date: 2020-02-03 13:55:46
Accepted Date: 2020-06-17 00:00:00
Abstract
Ulasan film adalah sebuah opini yang bersifat subjektif. Ulasan film memiliki media yang bera-gam, seperti tulisan, audio, dan video. Ulasan film dapat diolah dengan menggunakan klasifikasi sentimen, agar u-capan seseorang terkait film dapat ditentukan sebagai sen-timen tertentu. Di masa sekarang, data memiliki berbagai bentuk, pemilihan jenis data yang lebih baik juga dapat mempengaruhi klasifikasi sentimen. Data video dapat di-konversi menjadi data teks dengan bantuan Speech-to-Text (STT). Data teks digunakan karena kata atau kalimat dapat dibedakan secara negatif atau positif. Data ulasan dikelom-pokkan berdasarkan aspek penilaian film dan klasifikasi sentimen dilakukan pada keseluruhan potongan ulasan serta di tiap aspek yang ada. Dengan menggunakan metode Convolutional Neural Network, didapatkan bahwa model klasifikasi sentimen tiap aspek memiliki nilai AUC lebih baik dibandingkan model klasifikasi sentimen dengan keseluruhan data.
Keywords
Aspek Penilaian; Convolutional Neural Network; Speech-to-Text; Ulasan Film
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.