Estimasi Parameter Model Inflasi untuk Menganalisa Pengaruh Covid-19 Menggunakan GSTAR-Filter Kalman
Submission Date: 2021-08-23 19:43:53
Accepted Date: 2022-07-11 00:00:00
Abstract
Pandemi Covid-19 selain mengganggu kesehatan manusia juga dapat mengganggu kesehatan ekonomi di seluruh dunia termasuk Indonesia. Dengan keadaan ekonomi yang tidak stabil akhir-akhir ini, permasalahan inflasi menjadi salah satu fokus penting bagi pemerintah. Inflasi merupakan salah satu indikator penting dalam stabilitas perekonomian bagi suatu negara. Oleh karena itu, perlu adanya pemodelan matematika yang sesuai yang dapat memprediksi inflasi di masa mendatang. Pengaruh Covid-19 terhadap inflasi dapat diamati dengan memperhatikan pergerakan inflasi terhadap Covid-19 berdasarkan plot data inflasi. Selanjutnya data inflasi dimodelkan menggunakan model Generalized Space Time Autoregressive (GSTAR) dengan menggunakan pembobotan invers jarak antar lokasi dan pembobotan normalisasi korelasi silang untuk mendapatkan model inflasi yang sesuai. Selanjutnya dilakukan estimasi pada parameter model menggunakan metode Filter Kalman (FK). Hasil akhir menunjukkan bahwa Filter Kalman mampu memperbaiki hasil estimasi pada model GSTAR sehingga didapatkan hasil prediksi yang mendekati data aktual. Hal ini ditunjukkan dengan hasil simulasi dan nilai MAPE yang lebih kecil dari pada nilai MAPE model GSTAR-OLS dan GSTAR-GLS sebesar 0.14302%.
Keywords
Filter Kalman; Generalized Space Time Autoregressive; Inflasi; Invers Jarak; Normalisasi Korelasi Silang
CC Licencing
Authors who publish with this journal agree to the following terms:
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
- Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
- Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).
Refbacks
- There are currently no refbacks.
Jurnal Sains dan Seni ITS by Lembaga Penelitian dan Pengabdian Kepada Masyarakat, LPPM-ITS is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Based on a work at https://ejurnal.its.ac.id/index.php/sains_seni.